Ministério do Meio Ambiente - MMA Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - IBAMA Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio

DIAGNÓSTICO SOBRE A INVASÃO DO MEXILHÃO-DOURADO (*LIMNOPERNA FORTUNEI*) NO BRASIL

Relatório da Consulta Pública

Dr. Daniel Pereira dezembro/2017

Apresentação

O mexilhão-dourado (*Limnoperna fortunei*) é uma espécie de molusco bivalve introduzida no Brasil via água de lastro na década de 1990. Tendo em vista as características biológicas e ecológicas da espécie, bem como o ambiente favorável no país para a sua proliferação, o mexilhão-dourado se tornou uma espécie exótica invasora. A invasão biológica desta espécie tem causado impactos ambientais e econômicos, provocando alterações estruturais e funcionais nos ecossistemas e prejuízos às atividades humanas nas Regiões Sul, Sudeste, Centro-Oeste e, por último, na região Nordeste devido à recente detecção na Bacia do Rio São Francisco.

O Governo Federal estabeleceu no seu Plano Plurianual (PPA 2016-2019) a meta de "Controlar três espécies exóticas invasoras, mitigando o impacto sobre a biodiversidade brasileira". A implementação da meta deve contemplar o desenvolvimento e implementação de planos de controle para prevenção, detecção precoce, erradicação, e monitoramento de espécies exóticas invasoras. Neste sentido, o Ministério do meio Ambiente, em conjunto IBAMA e ICMBIO, está trabalhando no desenvolvimento de Planos Nacionais de Prevenção, Controle e Monitoramento de Espécies Exóticas Invasoras. Para a primeira etapa, o mexilhão-dourado (*Limnoperna fortunei*), o javali (*Sus scrofa*), e o coral-sol (*Tubastraea* spp.) foram definidas como espécies prioritárias.

Visando dar continuidade a uma série de ações que iniciaram com a formação de uma Força Tarefa Nacional por parte do MMA e de uma série de outros atores da sociedade envolvidos com a temática, foi elaborado o Diagnóstico sobre a Invasão Biológica do Mexilhão-Dourado (*Limnoperna fortunei*) no Brasil, compilando informações sobre a invasão do bivalve no Brasil e em países fronteiriços, nos quais a espécie está presente. Além disso, foram sugeridas um conjunto de atividades para subsidiar a elaboração do Plano Nacional de Prevenção, Controle e Monitoramento do Mexilhão-dourado no Brasil - Plano Mexilhão-dourado.

Uma consulta pública ao Diagnóstico foi realizada no período entre 2 e 16 de outubro de 2017, por meio da disponibilização do documento em arquivo extensão pdf e de um questionário *on line* disponibilizado pelo IBAMA para o envio de informações complementares, de sugestões e/ou críticas ao documento. O objetivo da consulta pública foi o de ampliar a participação da sociedade e dos diferentes setores e reunir subsídios para o processo de elaboração do Plano Nacional de Prevenção, Controle e Monitoramento do Mexilhão-dourado (*Limnoperna fortunei*).

O presente documento tem como objetivo apresentar uma avaliação das contribuições que resultaram da consulta pública, bem como as justificativas técnicas para a inclusão ou não das contribuições no Diagnóstico.

Lista de Tabelas

Tabela 1 Ocorrência do mexilhão-dourado em locais adicionais	4
Tabela 2 Respostas da questão "Em qual região hidrográfica ocorre impacto?"	5
Tabela 3 Tipos de Impactos registrados na região de ocorrência	6

Sumário

1.	Perfil dos Participantes4
2.	Registros adicionais do mexilhão-dourado
3.	Novos Registros de Impactos Ambientais e Econômicos e Estimativa de Prejuízos. 5
3.1.	Entupimento de tubulações de captação de abastecimento de água6
3.2.	Entupimento de tubulações de esgoto6
3.3.	Danos a hidrelétricas6
3.4.	Incrustação em cascos de embarcações7
3.5.	Incrustação de substratos naturais e artificiais em rios e lagos7
3.6.	Danos a tanques de aquicultura7
3.7.	Danos à biodiversidade aquática7
3.8.	Alteração na qualidade da água7
4.	Ações8
4.1.	Prevenção do avanço da invasão8
4.2.	Monitoramento da invasão9
4.3.	Controle populacional do mexilhão-dourado9
4.4.	Erradicação populacional do mexilhão-dourado12
4.5.	Mitigação de Impactos
5.	Priorização de ações
5.1.	Regiões Prioritárias
5.2.	Ações prioritárias sugeridas13
6.	Comentários e contribuições
7.	Considerações Finais
8.	Referências
9.	Questionário

1. Perfil dos Participantes

Dentre os 270 questionários preenchidos, apenas 41 apresentaram respostas completas. O perfil dos participantes foi variado, sendo 14 inscritos na consulta pública representantes de empresas do setor elétrico, 12 são servidores públicos do governo federal, 9 do governo estadual/distrital, 2 do governo municipal; 1 de empresa de transporte, 7 de empresa de saneamento, 3 de ONGs e outros 26 sem categoria definida. Dentre todos participantes, 31 não informaram o estado ao qual pertencem. Os demais se distribuem da seguinte forma, em ordem decrescente de inscritos: Minas Gerais (12 inscritos), São Paulo, Santa Catarina e Paraná (10), Rio Grande do Sul e Rio de janeiro (6), Pernambuco (2), Goiás (5), Distrito Federal (2), Ceará (1), Mato Grosso do Sul (1) e Pará (1).

2. Registros adicionais do mexilhão-dourado

Foram apontados novos registros nas bacias Tocantins-Araguaia, Amazônica, Bacia Atlântico Nordeste Oriental, Bacia Atlântico Nordeste Ocidental e Atlântico Leste (Tabela 1). No entanto, não foram fornecidos detalhes sobre estes registros, como a denominação do corpo hídrico, da localidade, do habitat, coordenadas geográficas e a data do registro. Não foi informado se o registro foi feito por meio de coleta e análise de amostras de larvas e adultos, ou por meio de fotografias. Deverá ser feito um contato com os inscritos, responsáveis pela informação dos registros com a finalidade de confirmar as informações e incluí-las no Diagnóstico. No entanto, avalia-se que estes registros podem resultar de identificações errôneas de outros moluscos que se aglomeram, como espécies de Mytilidae marinhos no estuário de rios costeiros, *Anticorbula fluviatilis* e Dreissenídeos nativos na Bacia Amazônica e Bacia Tocantins-Araguaia.

Tabela 1 Ocorrência do mexilhão-dourado em locais adicionais.

Resposta	Contagem
Bacia Amazônica	1
Bacia Tocantins Araguaia	1
Bacia do Paraguai	2
Bacia Atlântico Nordeste Ocidental	2
Bacia Atlântico Nordeste Oriental	1
Bacia do Paraná	18
Bacia do Parnaíba	1
Bacia do São Francisco	5
Bacia do Atlântico Leste	3
Bacia do Atlântico Sudeste	1
Bacia do Atlântico Sul	7
Bacia do Uruguai	9
Sem dados*	27

^{*}O inscrito não tinha dados disponíveis sobre a ocorrência do mexilhãodourado em locais adicionais nas bacias hidrográficas.

A consulta pública realizada sobre o diagnóstico da invasão do mexilhão-dourado no Brasil não apontou registros novos em reservatórios de usinas hidrelétricas. Da mesma forma, também não foram fornecidos novos registros em Unidades de Conservação. É possível que outros reservatórios de unidades geradoras de energia e Unidades de Conservação estejam contaminados, mas pela falta de programas de monitoramento estes registros não sejam conhecidos.

3. Novos Registros de Impactos Ambientais e Econômicos e Estimativa de Prejuízos

As respostas revelaram que maioria dos impactos foi relacionada à Bacia do Paraná, seguida da Bacia do Uruguai (Tabela 2). Os danos às hidrelétricas foram predominantes entre os impactos econômicos, seguido de danos aos tanques de aquicultura e o entupimento de tubulações de captação de água (Tabela 3). Dentre os impactos ambientais, prevaleceram a alteração dos habitas aquáticos por meio de incrustação de substratos naturais e artificiais em rios e lagos, assim como danos a biodiversidade aquática (Tabela 3). Estes impactos foram amplamente relatados no diagnóstico, cabendo confirmar e dimensionar sua relevância nas áreas apontadas como novos registros.

Tabela 2 Respostas da questão "Em qual região hidrográfica ocorre impacto?"

Resposta	Contagem
Bacia Amazônica	1
Bacia Tocantins Araguaia	1
Bacia do Paraguai	4
Bacia Atlântico Nordeste Ocidental	1
Bacia Atlântico Nordeste Oriental	1
Bacia do Paraná	20
Bacia do Parnaíba	2
Bacia do São Francisco	8
Bacia do Atlântico Leste	2
Bacia do Atlântico Sudeste	1
Bacia do Atlântico Sul	5
Bacia do Uruguai	9
Sem dados*	1

^{*}O inscrito não tinha dados disponíveis sobre a ocorrência de impactos do mexilhão-dourado em bacias hidrográficas.

Tabela 3 Tipos de Impactos registrados na região de ocorrência.

Resposta	Contagem
Entupimento de tubulações de captação de abastecimento de água	15
Entupimento de tubulações de esgoto	3
Danos a hidrelétricas	25
Incrustação em cascos de embarcações	12
Incrustação de substratos naturais e artificiais em rios e lagos	18
Danos a tanques de aquicultura	16
Danos a biodiversidade aquática	17
Alteração na qualidade da água	10
Outros	4
Sem dados	0

^{*}O inscrito não tinha dados disponíveis sobre os tipos de impactos do mexilhão-dourado na região de ocorrência.

3.1. Entupimento de tubulações de captação de abastecimento de água

Foram contabilizados 15 registros deste impacto por meio da consulta pública, sem a informações sobre o local de ocorrência (localidade, cidade, bacia hidrográfica). Outra informação fornecida afirma que os prejuízos socioeconômicos ocorrem de várias formas, para as empresas que captam água dos rios, para a piscicultura e também para a saúde da população. Um inscrito relatou preocupação com o risco de entupimento das tubulações de captação de água da cidade de Londrina, sugerindo que seja avaliada a probabilidade de danos ao sistema que capta água do rio Tibagi, o qual é responsável por 60% do abastecimento da cidade.

3.2. Entupimento de tubulações de esgoto

Foram contabilizados três registros deste impacto por meio da consulta pública. Não foram fornecidos detalhes sobre o local de ocorrência (localidade, cidade, bacia hidrográfica) deste tipo de impacto, e nem mesmo informações que precisem a sua ocorrência e magnitude.

3.3. Danos a hidrelétricas

Foram contabilizados 25 registros deste impacto por meio da consulta pública. Um dos inscritos relatou não dispor de dados sobre estimativas de custos, mas afirmou que a incrustação do mexilhão-dourado na UHE Gov. Jayme Canet Júnior (Mauá), no Paraná, certamente vem trazendo impactos à usina e ao ambiente associado. Relatou a parada de unidades geradoras na usina e prejuízo na criação de tilápia no reservatório, devido às incrustações nos tanques redes, sendo estas, possivelmente, um agravante na disseminação da invasora. Não foi esclarecida qual a forma de disseminação, mas provavelmente a tilápia pode disseminar o mexilhão-dourado por meio da passagem via trato digestivo, após ingeri-lo e liberá-lo via fezes.

Além disso, o manejo inadequado dos tanques redes, durante a limpeza pode novamente contaminar o ambiente aquático. O deslocamento de tanques contaminados para áreas não contaminadas também representa um risco podendo intensificar a dispersão do molusco invasor. Os mexilhões crescem nas redes e demais superfície metálicas do tanque acarretando a deterioração do material comprometendo a vida útil de todo o aparato (Oliveira et al., 2014).

Outro inscrito relatou que há utilização do produto MXD-100 para o controle químico do mexilhão-dourado, com gasto anual aproximado de R\$ 400.000,00 (4.000kg/ano). Além disso, também relatou paradas de unidades para limpeza mecânica das grades da tomada d'água, substituição e limpeza de trocadores de calor e de tubulações, sendo que uma pessoa é destinada exclusivamente para intervenção de limpeza no sistema de resfriamento, especialmente nos trocadores de calor. Segundo o inscrito, as UHEs contaminadas param, em geral, 3 dias/ano para manutenção forçada por mexilhão-dourado.

Outro inscrito sumarizou a situação da seguinte forma:

"a colonização deste molusco exótico está causando a recorrência de prejuízos ambientais nos corpos hídricos, e socioeconômicos para as Usinas Hidrelétricas, uma vez que este molusco se fixa e incrusta nas paredes submersas e causa a obstrução da passagem de água pelos filtros e ductos dos sistemas de refrigeração. Desta maneira, compromete o funcionamento contínuo da geração de energia por parte das Usinas. Esta interferência causada pelo molusco causa incerteza da produção programada de energia, aumenta os custos de manutenção e impacta no custo final da unidade de energia gerada pela usina".

3.4. Incrustação em cascos de embarcações

Foram contabilizados 12 registros deste impacto por meio da consulta pública. Não foram fornecidos detalhes sobre o local (localidade, cidade, bacia hidrográfica) deste tipo de impacto, e nem mesmo informações que precisem a sua ocorrência e magnitude.

3.5. Incrustação de substratos naturais e artificiais em rios e lagos

Foram contabilizados 18 registros deste impacto por meio da consulta pública. Não foram fornecidos detalhes sobre o local (localidade, cidade, bacia hidrográfica) deste tipo de impacto, e nem mesmo informações que precisem a sua ocorrência e magnitude.

3.6. Danos a tanques de aquicultura

Foram contabilizados 16 registros deste impacto por meio da consulta pública. Um dos escritos estimou o dano à aquicultura e revelou que o custo pode ser de R\$ 3.000,00 a R\$ 4.000,00 por 1.000 kg de peixes mortos ou diminuição de rendimento final do peixe produzido. Não foram fornecidos detalhes sobre o local (localidade, cidade, bacia hidrográfica) deste tipo de impacto, e nem mesmo informações que precisem a sua ocorrência e magnitude.

3.7. Danos à biodiversidade aquática

Foram contabilizados 17 registros deste impacto por meio das respostas ao questionário da audiência pública, sem informar qual o curso d'água, bacia hidrográfica, espécies, populações, comunidades e ou ecossistemas foram afetados.

3.8. Alteração na qualidade da água

Foram contabilizados 10 registros deste impacto por meio da consulta pública. Não foram fornecidos detalhes sobre quais características físicas, químicas ou biológicas da água foram afetadas,

assim como não foram informados o local (localidade, cidade, bacia hidrográfica) deste tipo de impacto, e nem mesmo informações que precisem a sua ocorrência e magnitude.

4. Ações

A maioria das ações foram informadas sem maiores detalhamentos sobre o local de implementação, quais instituições envolvidas e a efetividade dos resultados. Um dos inscritos fez uma consideração quanto à falta de integração das instituições e de divulgação dos resultados:

"tudo passa pela integração e nivelamento do conhecimento. Parece-me que cada empresa, lugar, instituição, conhece um pouco do quebra-cabeça e não se conversaram o suficiente para unificar a informação, sendo necessária está a maior integração, podendo utilizar também, por exemplo, a ABRAGE - Assoc. Brasileira das Empresas Geradoras de Energia Elétrica - para difundir a informação neste segmento. Cada localidade utiliza um método de controle ou de mitigação. Considero de suma importância propiciar mecanismos em que a informação circule de forma mais dinâmica possível dentro da sociedade, e assim, propiciar uma nova cultura ambiental dentro da sociedade brasileira. Temos uma cultura muito frágil no que diz respeito a Educação Ambiental."

Neste sentido, o Plano Nacional de Prevenção, Controle e Monitoramento do Mexilhãodourado é uma oportunidade de integração e coordenação das ações, de forma a atingir uma maior eficiência e eficácia das mesmas, com base em um objetivo comum a todos os atores envolvidos.

4.1. Prevenção do avanço da invasão

Foram contabilizadas 13 ações de prevenção dentre as respostas ao questionário da audiência pública, mas não foram informadas em qual área ou bacia hidrográfica foram implementadas (Tabela 4). A maioria das ações de prevenção, exceto aquelas de grande escala realizadas por FURNAS, CESP e CEMIG, entre poucas outras, são pontuais e pouco articuladas, sendo difícil quantificar sua efetividade. Além disso, o alcance destas ações muitas vezes é local, não sendo levado ao conhecimento do grande público. Neste sentido, o Plano Nacional de Prevenção, Controle e Monitoramento do Mexilhão-dourado é de suma importância para a articulação e intercâmbio de experiências, ampliando o alcance das mesmas.

Tabela 4 Ações de manejo do mexilhão-dourado no Brasil

Resposta	Contagem
Prevenção do avanço da invasão	13
Monitoramento da invasão	27
Controle populacional do mexilhão-dourado	10
Erradicação populacional do mexilhão-dourado	7
Mitigação dos impactos	9
Sem dados*	10

^{*}O inscrito não tinha dados disponíveis sobre os tipos de impactos do mexilhão-dourado na região de ocorrência.

4.2. Monitoramento da invasão

Foram contabilizados 27 registros de ações de monitoramento dentre as respostas ao questionário da audiência pública, sem especificação do local (localidade, cidade, bacia hidrográfica) de ocorrência. A falta de detalhamento e divulgação destas ações comprometem a multiplicação das mesmas. Cabe mencionar ainda que a presença do mexilhão-dourado em níveis populacionais elevados em usinas hidrelétricas frequentemente gera preocupação por parte da sociedade com a falta de energia e com a qualidade da água. Além disso, a descontinuidade das ações por falta de recursos, financeiros, por exemplo, acaba por refletir na não divulgação dos dados.

4.3. Controle populacional do mexilhão-dourado

Foram contabilizados 10 registros de ações de controle dentre as respostas ao questionário da audiência pública, no entanto não foram fornecidos detalhes precisos sobre o local (localidade, cidade, bacia hidrográfica) de ocorrência tampouco o método utilizado. Foi relatado por um dos inscritos que em algumas usinas hidrelétricas o controle vem sendo realizado por algumas empresas através do uso de produto e processos não registrados no IBAMA para a finalidade, não tendo as devidas garantias de segurança ambiental. A informação deverá ser verificada pelo Ibama, que tomará as providências necessárias. Uma estratégia para o levantamento dos dados referentes ao controle populacional do mexilhão-dourado, seria condicionar a emissão e renovação das licenças ambientais de empreendimentos hidrelétricos, à execução de um programa de monitoramento e controle do mexilhão-dourado. Os relatórios do programa deverão apresentar todas as ações desenvolvidas pelo empreendedor para controlar as incrustações do molusco.

Foi relatado que alguns órgãos ambientais ainda não estão totalmente esclarecidos quando a resolução CONAMA n° 467/2015, que dispões sobre critérios para a autorização de uso de produtos ou de agentes de processos físicos, químicos ou biológicos para o controle de organismos ou contaminantes em corpos hídricos superficiais e dá outras providências. Órgãos estaduais teriam interpretações divergentes liberando o uso de produtos e processos não registrados para a finalidade de controle do mexilhão-dourado. Diante deste relato, fica evidente a necessidade de capacitação técnica aos servidores de órgãos estaduais que atuam em órgãos ambientais, quanto ao arcabouço legal e a gravidade do impacto do uso de produtos não registrados.

Outro inscrito apresentou discussão crítica quanto ao sistema vigente atual de registro de produtos para o controle químico em sistemas industriais, como segue:

"Em sistemas industriais, como usinas hidrelétricas, estações de tratamento de água e esgoto, os prejuízos socioeconômicos são mitigados internamente na indústria/estações, uma vez que o mexilhão-dourado adentra aos processos industriais através da água captada. Para estes casos, indústrias/estações, a aplicação de um programa químico para o tratamento da água no sistema industrial, para que possa atender aos parâmetros operacionais é essencial. Quando isto ocorre, o efluente gerado deve atender a legislação aplicável do CONAMA referente ao lançamento de efluentes em corpos hídricos. Cabe mencionar que as alternativas para controle químico do mexilhão-dourado atualmente aprovadas pelas IN 17/2015 e IN 18/2015, determinam a aplicação EXCLUSIVA do controle químico em sistema de resfriamento de usinas hidrelétricas, sem autorização para aplicação com outros fins, como, por exemplo, aplicação direta em corpos hídricos. Se faz necessário rever a exigência de solicitação de registro para produtos químicos que não serão utilizados em ambiente aquático, como por exemplo, represas, reservatórios, lagos, rios, dentre outros corpos hídricos naturais e/ou artificiais, uma vez que a aplicação destes produtos será exclusiva em sistemas industrias, com parâmetros físico-químicos e biológicos devidamente controlados, conforme

legislação ambiental vigente. É necessário reformar os critérios para autorização de produtos para controle, não equiparando a agrotóxicos produtos com ação por mecanismos não-toxicológicos (alteração de pH, luz ultravioleta, oxidação, etc)."

No diagnóstico do mexilhão-dourado no Brasil, o arcabouço legal referente ao controle químico do mexilhão-dourado foi apresentado de forma bastante clara. É obrigatório o Registro Especial Temporário (RET) para produtos técnicos, pré-misturas, agrotóxicos e afins destinados à pesquisa e experimentação, tanto em ambiente natural como dentro de plantas geradoras de energia ou de captação e tratamento de água. O Registro Especial Temporário está de acordo com o Decreto nº 4.074/2002, o ato privativo de órgão federal competente, destinado a atribuir o direito de utilizar um agrotóxico, componente ou afim para finalidades específicas em pesquisa e experimentação, por tempo determinado, podendo conferir o direito de importar ou produzir a quantidade necessária à pesquisa e experimentação.

Conforme o Decreto, cabe ao Ministério da Agricultura, Pecuária e Abastecimento conceder o registro, inclusive o RET, de agrotóxicos, produtos técnicos, pré-misturas e afins para uso nos setores de produção, armazenamento e beneficiamento de produtos agrícolas, nas florestas plantadas e nas pastagens, atendidas as diretrizes e exigências dos Ministérios da Saúde e do Meio Ambiente. E ao Ministério da Saúde, cabe conceder o registro, inclusive o RET, de agrotóxicos, produtos técnicos, prémisturas e afins destinados ao uso em ambientes urbanos, industriais, domiciliares, públicos ou coletivos, ao tratamento de água e ao uso em campanhas de saúde pública atendidas as diretrizes e exigências dos Ministérios da Agricultura e do Meio Ambiente. Por fim, cabe ao Ministério do Meio Ambiente, por meio do IBAMA, conceder o registro, inclusive o RET, de agrotóxicos, produtos técnicos e pré-misturas e afins destinados ao uso em ambientes hídricos, na proteção de florestas nativas e de outros ecossistemas, atendidas as diretrizes e exigências dos Ministérios da Agricultura, Pecuária e Abastecimento e do Ministério da Saúde.

É importante salientar as definições dispostas na Lei nº 7.802, de 11 de julho de 1989, que dispõe sobre a pesquisa, a experimentação, a produção, a embalagem e rotulagem, o transporte, o armazenamento, a comercialização, a propaganda comercial, a utilização, a importação, a exportação, o destino final dos resíduos e embalagens, o registro, a classificação, o controle, a inspeção e a fiscalização de agrotóxicos, seus componentes e afins, e dá outras providências. De acordo com esta Lei, são considerados agrotóxicos os produtos e os agentes de processos físicos, químicos ou biológicos, destinados ao uso nos setores de produção, no armazenamento e beneficiamento de produtos agrícolas, nas pastagens, na proteção de florestas, nativas ou implantadas, e de outros ecossistemas e também de ambientes urbanos, hídricos e industriais, cuja finalidade seja alterar a composição da flora ou da fauna, a fim de preservá-las da ação danosa de seres vivos considerados nocivos. De acordo com seu artigo 3°, os agrotóxicos, seus componentes e afins só poderão ser produzidos, exportados, importados, comercializados e utilizados, se previamente registrados em órgão federal, de acordo com as diretrizes e exigências dos órgãos federais responsáveis pelos setores da agricultura, saúde e do meio ambiente.

Dessa forma, todas as formas de controle do mexilhão-dourado que se enquadrarem na definição disposta na Lei nº 7.802/1989 e seu respectivo Decreto Regulamentador de n° 4.074, de 4 de janeiro de 2002, devem ser registradas para que sejam produzidas, exportadas, importadas, comercializadas ou utilizadas no país. De acordo com o Decreto nº 4.074/2002, cabe ao Ministério do Meio Ambiente, especialmente ao IBAMA:

- I Avaliar os agrotóxicos e afins destinados ao uso em ambientes hídricos, na proteção de florestas nativas e de outros ecossistemas, quanto à eficiência do produto;
- II Realizar a avaliação ambiental, dos agrotóxicos, seus componentes e afins, estabelecendo suas classificações quanto ao potencial de periculosidade ambiental;
- III Realizar a avaliação ambiental preliminar de agrotóxicos, produto técnico, pré-mistura e afins destinados à pesquisa e à experimentação;
- IV Conceder o registro, inclusive o RET, de agrotóxicos, produtos técnicos e pré-misturas e afins destinados ao uso em ambientes hídricos, na proteção de florestas nativas e de outros ecossistemas, atendidas as diretrizes e exigências dos Ministérios da Agricultura, Pecuária e Abastecimento e da Saúde.

Em se tratando de um produto à base de agente microbiológico, o mesmo irá se enquadrar no Anexo III da Instrução Normativa Conjunta nº 25/2005, o qual traz uma relação de produtos específicos (a exemplo dos agentes biológicos de controle, microbiológicos, com exceção daqueles obtidos por meio de técnicas de engenharia genética). Para a solicitação de Registro Especial Temporário, o requerente deverá encaminhar o disposto no Anexo II da referida Instrução, o qual informa o Relatório Técnico para produtos listados no Anexo III. Portanto, as legislações que regem os procedimentos a serem adotados quando da solicitação de RET são o Decreto n] 4074/2002INC nº 25/ 2005.

De acordo com a INC nº 25/2005: Além do previsto no art. 7º desta Instrução Normativa, este documento deve ser assinado pelo proprietário da terra e pelo requerente, ou por seus representantes legalmente constituídos. Uma vez concedido o RET, e após o período de experimentação do produto, poderá ser requerido o registro do mesmo. Nesse caso, em se tratando de agente microbiológico de controle, deverá ser obedecido o disposto na INC nº 03/2006, a qual estabelece procedimentos a serem adotados para efeito de registro de agentes microbiológicos empregados no controle de uma população ou de atividades biológicas de um outro organismo vivo considerado nocivo. Nesse caso, deverão ser encaminhados, no momento da solicitação de registro (que também deve ser realizada nos 3 Órgãos), todos os documentos e estudos relacionados na referida norma. Ainda há de se considerar a Instrução Normativa Nº 5, de 26 de agosto de 2016, que estabelece o procedimento "quanto ao pleito de registro especial temporário referente a agente biológico ou a produtos à base de agentes microbiológicos, exóticos ou sem comprovação de ocorrência natural no País, destinados ao controle biológico de pragas e doenças, até que sejam estabelecidos critérios para a avaliação dos riscos de sua introdução em território brasileiro". Esta resolução deve ser considerada para o registro temporário de produtos à base de agentes de controle biológico em sistemas hidrográficos brasileiros. Para o uso de produtos ou de agentes biológicos no controle de organismos aquáticos ou contaminantes em corpos hídricos superficiais, deve-se solicitar autorização ao órgão competente de acordo com critérios estabelecidos na resolução CONAMA nº 467/2015. Segundo o Artigo 1º desta resolução, esta visa estabelecer critérios e procedimentos para a avaliação, pelos órgãos ambientais, das solicitações de autorização de uso de produtos e de agentes de processos físicos, químicos ou biológicos em corpos hídricos superficiais com a finalidade de: I -controle populacional de espécies que estejam causando impacto negativo ao meio ambiente, à saúde pública ou aos usos múltiplos da água. De acordo com o Art. 2º, esta Resolução não se aplica: I – às estações de tratamento de água ou esgoto, galerias e tubulações pluviais, aquicultura em tanque-escavado/edificado e seus canais de derivação; II – às situações emergenciais ou de calamidade pública decretadas ou declaradas

oficialmente; III – às medidas imediatas adotadas em decorrência de acidentes ambientais; e IV – aos casos específicos de uso no mar de dispersantes químicos regulamentados em legislação específica.

4.4. Erradicação populacional do mexilhão-dourado

Apesar terem sido quantificados 7 registros de erradicação de populações do mexilhão-dourado, nenhum desde registros foi detalhado, salvo um caso de controle populacional natural que ocorre em área estuarinas do Sul do Brasil, que acontece de forma semelhante no Pantanal devido às alterações de qualidade da água durante o fenômeno decoada, o qual ocorre após a decomposição da vegetação herbácea da planície fluvial em período de inundação, acarretando em hipoxia (<2mg/L) ou até anoxia, liberação de CO₂ livre e nutrientes, conferindo cor de chá preto a água (Oliveira et al., 2013). Percebe-se que há uma certa confusão quanto aos termos controle, que apenas pode reduzir os níveis populacionais por um período de tempo, enquanto que a erradicação resulta na extinção local ou regional de uma população ou mais populações, após um evento ambiental drástico ou intervenção humana.

Quanto à "erradicação natural", como assim denominou o inscrito, embora trate-se de um controle populacional natural devido à salinização, em área estuarina devido às condições ambientais extremas, segue um relato abaixo:

"A região estuarina da Lagoa dos Patos, adjacente à cidade de Rio Grande, é colonizada temporariamente pelo mexilhão dourado quando há cenários de água doce (limnificação pelas fortes vazões). Isto ocorreu em 2002-2003 e 2009-2010. Entretanto, sua erradicação se dá de forma natural devido à salinização que ocorre após o enfraquecimento das vazões pelo estuário. Cabe salientar que, devido à sua persistência mesmo que em escala de meses, a partir desta ocorrência no estuário a espécie pode ampliar sua distribuição pelos sangradouros e tributários menores que desaguam na região estuarina, sendo estes pequenos corpos d'água seus futuros vetores de distribuição."

Outro inscrito sugeriu que o uso de biotecnologia pode ser uma nova metodologia a ser usada para prevenir o avanço e erradicar o animal de ambientes contaminados, uma vez que os métodos físicos e químicos usados atualmente se mostraram ineficientes. Cabe ressaltar que uma equipe de pesquisadores da UERJ está trabalhando num projeto que visa criar um mexilhão-dourado geneticamente modificado, para soltura em ambiente natural, visando o controle da população invasora ao cruzar com a população geneticamente modificada. A liberação de organismos geneticamente modificados (OGM), assim como de espécies exóticas invasoras em ambientes aquáticos é proibida pela legislação. Segundo a Lei n°11.959, de 29 de junho de 2009, "Art. 22. Na criação de espécies exóticas, é responsabilidade do aquicultor assegurar a contenção dos espécimes no âmbito do cativeiro, impedindo seu acesso às águas de drenagem de bacia hidrográfica brasileira. Parágrafo único. Fica proibida a soltura, no ambiente natural, de organismos geneticamente modificados, cuja caracterização esteja em conformidade com os termos da legislação específica".

4.5. Mitigação de Impactos

Por meio das respostas à consulta pública, foram contabilizadas 9 ações de mitigação de impactos, mas não foram informados quais tipos de impactos (ambientais ou econômicos) foram mitigados. A maioria dos impactos parcialmente mitigados relatados no Diagnóstico são econômicos por meio de estratégias de controle da espécie invasora. Até o momento são desconhecidos métodos de mitigação dos impactos no ambiente natural, em função das dificuldades de se mensurar a efetividade das ações e devido a carência de dados anteriores a introdução do mexilhão-dourado, principalmente quanto ao funcionamento dos ecossistemas.

5. Priorização de ações

5.1. Regiões Prioritárias

Foram apontadas algumas bacias hidrográficas como regiões prioritárias para o estabelecimento de ações de prevenção, monitoramento e controle, são elas: bacia do rio Amazonas e bacia dos rios Tocantins-Araguaia, bacia do rio Tibagi e do rio Iguaçu. As duas primeiras bacias consistem em áreas nas quais ainda não foram confirmados registros do mexilhão-dourado mediante a coleta de larvas e adultos, tão pouco documentados impactos ambientais e econômicos. As demais bacias situadas no Estado do Paraná, apontadas pelos inscritos, apresentam pontos de captação de água alvos de impactos da incrustação do mexilhão-dourado. No entanto, estas áreas não apresentam as únicas cidades brasileiras com impactos na captação. Diversas cidades no Rio Grande do Sul, como São Leopoldo, Novo Hamburgo, Canoas, Gravataí e Porto Alegre foram afetadas por este tipo de impacto, sendo necessário estabelecer estratégias para o controle do mexilhão-dourado na captação de água de cidades localizadas em todas as bacias contaminados pela espécie invasora.

5.2. Ações prioritárias sugeridas

Uma série de ações prioritárias foram elencadas pelos inscritos para subsidiar a elaboração do Plano Nacional de Prevenção, Controle e Monitoramento do Mexilhão-dourado:

- ➤ Considerar na elaboração do Plano de Ação Nacional para prevenção, controle e monitoramento do mexilhão-dourado, particularidades limnológicas de cada bacia hidrográfica;
- ➤ Integrar os gestores das bacias hidrográficas na elaboração e execução das ações do plano, como uma Força Tarefa Nacional;
- Implementar uma rede de ações padronizadas de prevenção, monitoramento e controle, dada as dificuldades de erradicar a espécie invasora, envolvendo diversos atores da sociedade, inclusive pesquisadores especialistas no tema, sendo necessária a disponibilização pública de dados;
- ➤ Monitorar a espécie invasora em rios e reservatórios que apresentam risco potencial de introdução, visando à detecção precoce;

- Monitorar e fiscalizar embarcações quanto à presença de jovens e larvas, com ênfase naquelas que se deslocam de regiões invadidas para regiões não invadidas, tanto via terrestre como via aquática;
- ➤ Implantar ações de controle em embarcações de pesca, como a desinfecção de tralha de pesca, do casco do barco e motor de popa, água de viveiros, antes de trocarem de local, assim como dos petrechos de pesca, entre outros;
- > Fiscalizar portos quanto ao atendimento de procedimentos de descarga de água de lastro, assim como monitorar a água de lastro;
- ➤ Evitar atividades pisciculturas na bacia Amazônica, com intuito de controlar a dispersão do molusco;
- Fiscalizar e proibir o transporte de alevinos e peixes vivos, os quais podem conter larvas na água de transporte, de regiões contaminadas pelo mexilhão-dourado para sistemas de piscicultura em regiões não contaminadas,
- ➤ Identificar potenciais vetores de dispersão nas regiões limites entre bacias contaminadas e não contaminadas;
- ➤ Exigir o monitoramento populacional do mexilhão-dourado no processo de licenciamento ambiental;
- ➤ Controlar o acesso de embarcações nos reservatórios e conscientização dos proprietários lindeiros às margens dos mananciais invadidos;
- ➤ Divulgar métodos de prevenção da dispersão da espécie na bacia do rio São Francisco ainda recente;
- Determinar a velocidade de dispersão da invasora em ambientes em processo de invasão para subsidiar ações;
- ➤ Avaliar os riscos à captação e tratamento de água de cidades situadas em bacias invadidas, como por exemplo, o município de Londrina;
- Mitigar e controlar os impactos do mexilhão-dourado junto captação de água no rio Tibagi;
- Executar programas de educação ambiental, sensibilização, capacitação e prevenção, tendo como público alvo as populações que utilizam os corpos hídricos ainda não invadidos e invadidos, junto às prefeituras, escolas, associações de pescadores, comitês de bacias hidrográficas, empreendedores e etc., em especial nas regiões limítrofes de áreas não invadidas pelo mexilhão-dourado, e nas áreas não invadidas como as regiões hidrográficas do rio Amazonas, dos rios Tocantins-Araguaia;
- ➤ Inserir o tema bioinvasão nas grades curriculares, na pauta dos festivais locais de pesca e piscicultura, bem como nos noticiários nacionais, locais, regionais de rádio e televisão, visando uma maior divulgação a população;
- > Formar uma rede de multiplicadores (moradores e estudantes) para atuar em ações de prevenção;

- > Avaliar a possibilidade da utilização do mexilhão-dourado na produção de composto orgânico;
- Apoiar a pesquisa científica nas universidades;
- ➤ Implantação de métodos preventivos com a realização de análises de identificação e corretivos.

6. Comentários e contribuições

Algumas referências citadas que não foram listadas ao final do documento foram informadas pelos inscritos:

- Uliano-Silva, M.; Fernandes F.C.; Holanda, I. B. B.; Rebelo, M. F. 2012. Biological invasions. How invasive species threaten biodiversity: The case of the golden mussel *Limnoperna fortunei* and the Amazon River basin. In: Silvana Allodi; Evelise Maria Nazari. (Org.). Exploring Themes on Aquatic Toxicology. 1ed. Bombain: Kerala: Research Signpost, 2013, v. , p. 143-157. DOI: 10.13140/RG.2.1.1511.5923
- Uliano-Silva M, Americo JA, Brindeiro R, Dondero F, Prosdocimi F, et al. (2014) Gene Discovery through Transcriptome Sequencing for the Invasive Mussel *Limnoperna fortunei*. PLoS ONE 9(7): e102973. DOI:10.1371/journal.pone.0102973
- Uliano-Silva m, Américo JA, Brindeiro R, Dondero F, Prosdocimi F, Rebelo MF. 2015. The Genetics of the Golden Mussel (*Limnoperna fortunei*): Are Genes Related to Invasiveness? in Boltovskoy D (ed). *Limnoperna fortunei*. Volume 10 of the series Invading Nature Springer Series in Invasion Ecology pp 67-75. DOI:10.1007/978-3-319-13494-9 4
- Uliano-Silva M, Americo JA, Costa I, Schomaker-Bastos A, de Freitas Rebelo M, Prosdocimi F. 2015. The complete mitochondrial genome of the golden mussel *Limnoperna fortunei* and comparative mitogenomics of Mytilidae. Gene. S0378-1119(15)01463-8. DOI: 10.1016/j.gene.2015.11.043
- Uliano da Silva M, Dondero F, Otto T, Costa I, Lima NC, Americo JA, Mazzoni C, Prosdocimi F, Rebelo MF. (2017) A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel *Limnoperna fortunei*. PeerJ Preprints 5:e2995v1https://doi.org/10.7287/peerj.preprints.2995v1 Apresentação de alerta e explanação aos usuários, bem como instrução de técnicas preventivas e de erradicação.

7. Considerações Finais

A maioria das respostas obtidas pelo preenchimento do questionário disponibilizado mediante a consulta pública ao diagnóstico, referem-se a sugestões de ações de prevenção, monitoramento e controle, extremamente pertinentes, as quais subsidiarão a elaboração do Plano Nacional durante a oficina a ser realizada.

As informações referentes aos impactos ambientais e econômicos, a distribuição geográfica e novos registros, bem como de ações existentes prevenção, monitoramento, erradicação, controle e mitigação foram superficiais apresentando pouco detalhamento, não permitindo uma complementação consistente do diagnóstico.

Através de conversa informal com pesquisadores e outros atores que participaram da consulta pública, muitos relataram a impossibilidade de adicionar arquivos no link da consulta, como artigos, notícias, relatórios e outros documentos técnicos com novas informações. Alguns inscritos optaram por não preencher o questionário, uma vez que já tinham informações prontas em documentos que poderiam ser anexados no portal da consulta pública. Desta forma, deve-se avaliar a incorporação de outros meios de contribuição nas próximas consultas públicas realizadas pelo órgão ambiental.

8. Referências

Oliveira, M.D.; Ayrosa, D.M.R.; Castellani, D.; Campos, M. & Mansur, M.C. 2014. Mexilhão dourado nas pisciculturas em tanques-rede. Panorama da Aquicultura 145: 23-29.

Legislação

- Decreto Legislativo nº 148/2010. Disponível em: http://www2.camara.leg.br/legin/fed/decleg/2010/decretolegislativo-148-12-marco-2010-603816-publicacaooriginal-124707-pl.html
- BRASIL, Decreto 4.074/2002. Disponível em: http://www.planalto.gov.br/ccivil_03/decreto/2002/d4074.htm
- BRASIL, Lei 7.802, de 11 de julho de 1989. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/L7802.htm
- CONAMA, Resolução n° 430 de 2011. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646
- CONAMA, Resolução nº 467, de 16 de julho de 2015. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=712
- LEI N° 11.959, DE 29 DE JUNHO DE 2009, http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2009/lei/111959.htm

Consulta pública para subsidiar o diagnóstico da invasão biológica do mexilhão-dourado (Limnoperna fortunei) no Brasil

Esta consulta pública visa agregar informações da sociedade em geral, de setores do governo, da academia e demais interessados para o "Diagnóstico da invasão biológica do mexilhão-dourado (*Limnoperna fortunei*) no Brasil", para subsidiar a elaboração de estratégias e ações para a prevenção, controle e monitoramento da espécie no país.

Por meio deste instrumento pretende-se contribuir com conhecimentos e experiências para a construção conjunta das estratégias e ações de controle e monitoramento desta espécie exótica invasora.

Plano Estratégico de Biodiversidade 2011-2020.

Em 2010, a Convenção sobre Diversidade Biológica – CDB, da qual o Brasil é signatário, aprovou a decisão X/2 que estabeleceu o Plano Estratégico de Biodiversidade 2011-2020, incluindo as Metas de Aichi de Biodiversidade. Com vistas a internalizar estas Metas, o Brasil estabeleceu as Metas Nacionais de Biodiversidade 2011-2020 por meio da Resolução CONABIO nº 06, de 03 de setembro de 2013. As espécies exóticas invasoras são abordadas no "Objetivo Estratégico B", que pretende "Reduzir as pressões diretas sobre a biodiversidade e promover o uso sustentável", explicitamente na Meta nove (9):

"Até 2020, a Estratégia Nacional sobre Espécies Exóticas Invasoras deverá estar totalmente implementada, com participação e comprometimento dos estados e com a formulação de uma Política Nacional, garantindo o diagnóstico atualizado e continuado das espécies e a efetividade dos Planos de Ação de Prevenção, Contenção, Controle".

Com vistas ao atingimento da Meta 9, o Governo Federal estabeleceu no seu Plano Plurianual (PPA 2016-2019) a meta de "Controlar 3 espécies exóticas invasoras, mitigando o impacto sobre a biodiversidade brasileira". A implementação da meta deve contemplar a revisão e atualização do arcabouço legal aplicável ao controle de introdução e reintrodução de espécies exóticas invasoras e o desenvolvimento e implementação de planos de controle para prevenção, detecção precoce, erradicação e monitoramento de espécies exóticas invasoras. Foram definidas como espécies prioritárias o javali (*Sus scrofa*), o coral-sol (*Tubastraea* spp.) e o mexilhão-dourado (*Limnoperna fortunei*).

Espécie Exótica Invasora

A CDB define Espécie Exótica como toda espécie que se encontra fora de sua área de distribuição natural. Espécie Exótica Invasora, por sua vez, é definida como aquela que ameaça ecossistemas,

hábitats ou espécies. Espécies exóticas invasoras frequentemente resultam em impactos adversos sobre a biodiversidade nativa e danos substanciais à estrutura e ao funcionamento dos ecossistemas. Em geral, os impactos causados pelas espécies exóticas invasoras incluem desde a exclusão de espécies nativas até mudanças em nível de ecossistema, como alterações no regime de queimadas, ciclagem de nutrientes e fluxo de energia. Além disso, os prejuízos causados pelas espécies exóticas invasoras são avaliados em centenas de bilhões de dólares anualmente.

Mexilhão-dourado (Limnoperna fortunei)

O mexilhão-dourado é um molusco bivalve de águas doces e estuarinas proveniente da China. Diferentemente do mexilhão marinho (*Mytilus edulis*), de coloração preta, o mexilhão-dourado não é uma espécie comestível, possuindo coloração dourada, às vezes esverdeada. A espécie é originária do sudeste da Ásia (China, Camboja, Laos, Vietnã) e foi transportada para a América do Sul entre o final dos anos 1980, início dos anos 1990, por meio de tanques de água de lastro de navios cargueiros. Os tanques de lastro têm por função estabilizar as embarcações nas águas oceânicas e fluviais conforme a quantidade de cargas que a embarcação transporta, sendo importante para a segurança da navegação. Navios contendo larvas e mexilhões-dourados captados inadvertidamente em portos do leste da Ásia em seus tanques de lastro liberaram a espécie em águas Sul-Americanas. Uma vez liberadas no novo ambiente – provavelmente em área de portos estuarinos ou mesmo em um porto fluvial, as larvas e pequenos mexilhões- dourados encontraram condições semelhantes àquelas existentes nas regiões onde a espécie é nativa, além da ausência de inimigos naturais, e desde então colonizam e se reproduzem nos novos ambientes ocupados.

Segundo a literatura, inicialmente a espécie foi detectada e se estabeleceu na foz do rio da Prata (bacia do rio Paraná), sendo posteriormente detectada no rio Guaíba, no Rio Grande do Sul, provavelmente transportada por embarcações. Desde então a espécie vem se espalhando pelas bacias hidrográficas brasileiras, seja por meio de tanques de água de lastro, seja incrustada em cascos de navios, barcos de passeio, lanchas, tanques de piscicultura, petrechos de pesca contaminados, barcos transportados por carretas em rodovias, entre outros meios, o que tem contribuído não apenas para sua disseminação como para o surgimento de vários impactos ao meio ambiente, seus ecossistemas, fauna e flora, à economia e à saúde, com a degradação da qualidade das água.

Plano Nacional de Prevenção, Controle e Monitoramento do Mexilhão-Dourado

Em 2017, o Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), em conjunto com o Ministério do Meio Ambiente (MMA) e Instituto Chico de Conservação da Biodiversidade (ICMBio) iniciou uma agenda de atividades para elaborar a proposta de um Plano Nacional de Ação de Prevenção, Controle e Monitoramento do Mexilhão- dourado (*Limnoperna fortunei*). A proposta tem como objetivo definir ações integradas de controle, prevenção e monitoramento da invasão do mexilhão-dourado nas águas interiores brasileiras, e prevê a participação de diversos atores interessados, atingidos direta ou indiretamente pelos impactos e prejuízos causados pelas populações infestantes da espécie, atualmente presentes em diferentes bacias hidrográficas.

Entre as atividades realizadas para elaboração do Plano, está a confecção do diagnóstico da atual situação da invasão das águas interiores brasileiras pelo mexilhão-dourado, contemplando impactos, abrangência geográfica atual e potencial futura, possíveis vetores de dispersão da espécie, métodos de prevenção, controle e monitoramento. Estas informações, em conjunto com as contribuições resultantes da presente consulta pública, visam subsidiar a elaboração da proposta de Plano de Ação com o aporte de informações relevantes quanto às ações e metodologias possíveis eventualmente não contempladas no diagnóstico, bem como a identificação de atores sociais, pertencentes a diferentes setores da esfera pública ou privada, ainda não contemplados, mas que poderiam prover contribuições relevantes não apenas para a elaboração do Plano, como para sua futura execução integrada e coordenada.

Há 17 perguntas neste questionário

1. Identificação do participante

1 [1.1]Nome completo: *

Por favor, coloque sua resposta aqui:

2 [1.2]E-mail:

Por favor, coloque sua resposta aqui:

3 [1.3]CPF: *

Por favor, coloque sua resposta aqui:

4 [1.4]Telefone:

Por favor, coloque sua resposta aqui:

Formato: DDD telefone.

5 [1.5]

Área de atuação:

*

Please choose **all** that apply and provide a comment:

Governo Federal
Governo Estadual/Distrital
Governo Municipal
Empresa do setor elétrico
Empresa do setor de transporte
□Empresa do setor de saneamento
□Associação ou ONG de conservação do meio ambiente

Informar nome(sigla) do órgão/empresa/setor.

6 [1.6] Unidade da Federação: *

Favor escolher apenas uma das opções a seguir:

OAC

• Outros

- OAL
- OAP
- OAM
- OBA
- OCE
- O DF
- OES
- O GO
- O MA
- O MT
- O MS
- O MG
- O PA
- O PB
- O PR
- O PE
- O PI
- ORJ
- ORN
- ORS
- O RO
- ORR
- OSC

- OSP
- OSE
- OTO
- Outros

Selecione "outros", caso resida no exterior.

2. Ocorrência

No "Diagnóstico da invasão biológica do mexilhão-dourado (Limnoperna fortunei) no Brasil" foi identifica a ocorrência da espécie em:

- a) Regiões hidrográficas: Atlântico Sul, Atlântico Sudeste, Paraguai, Paraná, São Francisco, Uruguai.
- b) 27 Unidades de Conservação. No Rio Grande do Sul (Área de Proteção Ambiental Estadual Delta do Jacuí, Parque Estadual de Itapeva, Parque Estadual de Itapuã, Parque Estadual do Camaquã, Parque Estadual do Espinilho, Parque Estadual do Turvo, Parque Estadual Quarta Colônia, Reserva Biológica do Mato Grande, Estação Ecológica do Taim), Santa Catarina (Parque Estadual Fritz Plaumann, Parque Estadual Rio Canoas), Paraná (Estação Ecológica do Rio dos Touros, Parque Estadual Rio Guarani, Área de Proteção Ambiental de Guaraqueçaba, Estação Ecológica de Guaraqueçaba, Parque Nacional de Iguaçu, Parque Nacional de Ilha Grande), São Paulo (Parque Estadual do Aguapeí, Área de Proteção Ambiental Cananéia-Iguapé-Peruíbe, Parque Estadual do Morro do Diabo, Parque Estadual do Rio do Peixe), Mato Grosso (Parque Estadual Guirá, Estação Ecológica de Taiamã, Parque Nacional do Pantanal Matogrossense), Mato Grosso do Sul (Parque Estadual das Várzeas do Rio Ivinhema, Parque Estadual Pantanal do Rio Negro) e Paraná/Mato Grosso do Sul/São Paulo (Área de Proteção Ambiental de Ilhas e Várzeas do Rio Paraná).
- c) 50 reservatórios. Na Bacia Lagoa dos Patos (Ernestina, Itaúba, Passo Real, Leonel de Moura Brizola, Capingui 1, 14 de julho, Dona Francisca), Bacia Rio Uruguai (Campos Novos, Barra Grande, Machadinho, Itá, Foz do Chapecó), Bacia do Rio Paraná (Gov. Bento Munhoz da Rocha, (Foz do Areia), Gov. Ney Aminthas de Bar, Gov Joz Richa, Santa Clara, Fundo, Salto Osório, Salto Santiago, Gov. Jayme Canet Júnior (Maú), Capivara, Lucas Nogueira Garcez (Salto Grande), Canoas I, Canoas II, Taquaruçu (Escola Politécnica), Chavantes, Rosana, Barra Bonita, Bariri, Rui Barbosa (Nova Avanhandava), Três Irmãos, Ibitinga, Promissão, Itaipu, Engenheiro Sérgio Motta (Porto Primavera), Engenheiro Souza Dias (Jupiá), Ilha Solteira, Iguarapava, Volta Grande, Furnas, Jaguara, Marimbondo, Marechal Mascarenhas de Moraes (Peixoto), Porto Colômbia, Água Vermelha, Igarapava, Emborcação, São Simão, Foz do Rio Claro), Bacia do São Francisco (Sobradinho).

7 [2.1]Indique a ocorrência de mexilhão-dourado em locais adicionais, caso não tenham sido citados no Diagnóstico. *

Please choose **all** that apply and provide a comment:

- Bacia Amazônica
- Bacia Tocantins Araguaia
- Bacia do Paraguai

9 [3.5]Em qual região hidrográfica ocorre impacto? *

Só responder essa pergunta sob as seguintes condições:

Please choose all that apply and provide a comment:
• Bacia Amazônica
Bacia Tocantins Araguaia
• Bacia do Paraguai
• Bacia Atlântico Nordeste Ocidental
• Bacia Atlântico Nordeste Oriental
• Bacia do Paraná
• Bacia do Parnaíba
• Bacia do São Francisco
• Bacia do Atlântico Leste
• Bacia do Atlântico Sudeste
• Bacia do Atlântico Sul
• Bacia do Uruguai
• 🗆 Não sei
Selecione a região hidrográfica e informe o nome dos rios, reservatórios e/ou local do impacto observado

10 [3.3]O impacto é ambiental ou socioeconômico?

Só responder essa pergunta sob as seguintes condições:

Por favor, escolha as opções que se aplicam:

- Ambiental
- 🗆 Socioeconômico

11 [3.2]

Que tipo de impacto o mexilhão-dourado causa na região de ocorrência?

*

Só responder essa pergunta sob as seguintes condições:

Please choose all that apply and provide a comment:
• Entupimento de tubulações de captação de abastecimento de água
• Entupimento de tubulações de esgoto
• Danos a hidrelétricas
• □Incrustação em cascos de embarcações
• □Incrustação de substratos naturais e artificiais em rios e lagos
• Danos a tanques de aquicultura
• Danos a biodiversidade aquática
 □Alteração na qualidade da água
• □Outros

Especifique.

□Não sei

12 [3.4] Há estimativas de prejuízos causados pelo mexilhãodourado? Se houver, descreva o prejuízo e o tipo de impacto.

Só responder essa pergunta sob as seguintes condições:

Por favor, coloque sua resposta aqui:

Se possível, citar as referências bibliográficas (técnicas e/ou científicas).

4. Ações em curso

Há ações sendo desenvolvidas em âmbito federal, estadual e municipal; no âmbito federal, cabe citar a elaboração das "estratégias e ações para a prevenção, controle e monitoramento do mexilhão dourado", bem como a publicação das Instruções Normativas Ibama nº 17/2015 e nº 18/2015

permitindo o registro de produtos químicos para o controle de mexilhão. Nos âmbitos estadual e municipal, há informação de ações desenvolvidas por secretarias de meio ambiente em convênios com comitês de bacias, bem como a publicação de normas estabelecendo listas de espécies invasoras.

13 [4.1]Há medidas sendo tomadas em relação a invasão do mexilhão-dourado?

*

Please choose all that apply and provide a comment:
• Prevenção do avanço da invasão
•
• Controle populacional do mexilhão-dourado
• Erradicação populacional do mexilhão-dourado
•
• 🗆 Não há medidas sendo tomadas
• 🗆 Não sei
Descreva as medidas que estão sendo tomadas e cite os órgãos/instituições/empresas responsáveis pela sua execução.
14 [4.2]Há estimativas de custos relacionados a invasão d mexilhão dourado? *
Please choose all that apply and provide a comment:
• Prevenção do avanço da invasão

• Erradicação populacional do mexilhão-dourado

• Controle populacional do mexilhão-dourado

• Mitigação dos impactos

• Monitoramento da invasão

□Não sei

Informe as estimativas de custo especificando os locais de aplicação e/ou referência.

MINISTÉRIO DO MEIO AMBIENTE - MMA INSTITUTO BRASILEIRO DE RECURSOS NATURAIS RENOVÁVEIS - IBAMA

15 [5.1]

Algum	local	(região	hidrográfica,	unidade	de	conservação,
empree	ndimen	tos etc) d	eve receber ate	nção espec	cial qu	uanto as ações
de prev	enção d	do avanço	de invasão do	mexilhão-	doura	ndo? Indique o
local.						

*
Please choose all that apply and provide a comment:
□Sim
□Não

16 [5.2]Quais métodos devem ser empregados no local para prevenir o avanço da invasão do mexilhão-dourado? Justifique.

Só responder essa pergunta sob as seguintes condições:

Por favor, coloque sua resposta aqui:

■Não sei

6. Comentários e contribuições

17 [6.1]

Apresente comentários ou informações adicionais que considerar relevante para a elaboração do "Diagnóstico da invasão biológica do mexilhão-dourado no Brasil".

Por favor, coloque sua resposta aqui:

Se possível, citar as referências bibliográficas (técnicas e/ou científicas).

Agradecemos sua contribuição para o "Diagnóstico da invasão biológica do mexilhão-dourado

(Limnoperna fortunei) no Brasil".

Informamos que a próxima etapa é a realização da oficina de planejamento participativo que definirá as ações do Plano. As contribuições da consulta pública serão analisadas e submetidas à oficina de planejamento participativo prevista para novembro de 2017.

MINISTÉRIO DO MEIO AMBIENTE - MMA INSTITUTO BRASILEIRO DE RECURSOS NATURAIS RENOVÁVEIS - IBAMA INSTITUTO CHICO MENDES DE CONSERVAÇÃO DA BIODIVERSIDADE - ICMBio

DIAGNÓSTICO SOBRE A INVASÃO DO MEXILHÃO-DOURADO (LIMNOPERNA FORTUNEI) NO BRASIL

APRESENTAÇÃO

O mexilhão-dourado (*Limnoperna fortunei*) é uma espécie de molusco bivalve introduzida no Brasil via água de lastro na década de 1990. Tendo em vista as características biológicas e ecológicas da espécie, bem como o ambiente favorável no país para a sua proliferação, o mexilhão-dourado se tornou uma espécie exótica invasora. A invasão biológica desta espécie tem causado impactos ambientais e econômicos, provocando alterações estruturais e funcionais nos ecossistemas e prejuízos às atividades humanas nas Regiões Sul, Sudeste, Centro-Oeste e, por último, na região Nordeste devido a recente detecção na Bacia do Rio São Francisco.

O Governo Federal estabeleceu no seu Plano Plurianual (PPA 2016-2019) a meta de "Controlar três espécies exóticas invasoras, mitigando o impacto sobre a biodiversidade brasileira". A implementação da meta contempla o desenvolvimento e implementação de planos de controle para prevenção, detecção precoce, erradicação e monitoramento de espécies exóticas invasoras. Neste sentido, o Ministério do Meio Ambiente, em conjunto com suas vinculadas (IBAMA e ICMBIO), está trabalhando no desenvolvimento de Planos Nacionais de Prevenção, Controle e Monitoramento de Espécies Exóticas Invasoras. Para a primeira etapa, o mexilhão-dourado (*Limnoperna fortunei*), o javali (*Sus scrofa*), e o coral-sol (*Tubastraea* spp.) foram definidas como espécies prioritárias. O Plano Javali foi elaborado em 2016 e foi publicado por meio da Portaria Interministerial nº 232, de 23 de junho de 2017. O Plano Coral-sol está em fase de elaboração.

Visando dar continuidade a uma série de ações que iniciaram com a formação de uma Força Tarefa Nacional por parte do MMA e de uma série de outros atores da sociedade envolvidos com a temática, foi elaborado um diagnóstico, compilando informações sobre a invasão do bivalve no Brasil e em países fronteiriços, nos quais a espécie está presente. Além disso, foram sugeridas um conjunto de atividades para subsidiar a elaboração do Plano Nacional de Prevenção, Controle e Monitoramento do Mexilhão-dourado no Brasil (*Limnoperna fortunei*) - Plano Mexilhão-dourado.

SUMÁRIO

LISTA DE FIGURAS			
LISTA DE TABELAS	7		
1 Biologia e Ecologia	8		
1.1 Taxonomia	8		
1.2 Atributos da Espécie Invasora			
1.3 Morfologia	10		
1.3.1 Larva	10		
1.3.2 Adulto	11		
1.4 Reprodução e Ciclo de Vida	12		
1.5 Habitats	13		
1.6 Dinâmica Populacional	16		
1.7 Fatores Limitantes e Tolerância Ambiental	17		
1.8 Relações Tróficas	18		
1.8.1 Alimentação do Mexilhão-Dourado	18		
1.8.2 Predação do Mexilhão-Dourado	19		
1.8.3 Genoma Mitocondrial	21		
2 Processo de Invasão	22		
2.1 Distribuição Geográfica Nativa	22		
2.2 Áreas Invadidas e Cronologia de Invasão	22		
2.2.1 Ásia	22		
2.2.2 América do Sul	23		
2.2.2.1 RESERVATÓRIOS	27		
2.2.2.2 UNIDADES DE CONSERVAÇÃO	31		
2.3 Vias de Introdução	33		
2.4 Vetores de Dispersão	33		
2.5 Cenários potenciais futuros de invasão e Dispersão	38		
3 Impactos	43		
3.1 Impactos Ambientais	43		
3.1.1 Habitats Aquáticos	43		
3.1.2 Macrófitas Aquáticas e Perífiton	43		
3.1.3 Organismos Planctônicos	45		
3.1.4 Fauna Bentônica	46		
3.1.5 Ictiofauna	47		

	3.1.6	Qualidade Da Agua	47
	3.1.7	Cadeia Trófica	47
3	3.2 Im	pactos Econômicos	49
	3.2.1	Geração De Energia E Reservatórios	49
	3.2.2	Captação, Tratamento E Distribuição De Água	50
	3.2.3	Aquicultura E Pesca	50
	3.2.4	Navegação E Hidrovias	51
	3.2.5	Pesca	52
	3.2.6	Irrigação	52
	3.2.7	Turismo	52
4	Preven	ção	52
5	Erradic	ação	54
6	Monito	ramento	54
6	5.1 Pro	otocolos	54
	6.1.1	Qualitativo de Larvas - PCR	55
	6.1.2	Quantitativo de Larvas - Estereomicroscopia Óptica	56
	6.1.3	Quantificação de Larvas - Estereomicroscopia Óptica com Luz Polarizada	57
	6.1.4	Quantitativo de Larvas - PCR em Tempo Real	57
	6.1.5	Quantificação de Larvas - Análise Automatizada De Partículas	58
	6.1.6	Recrutas e Adultos - Raspadores	59
	6.1.7	Quantificação De Recrutas E Adultos - Busca-Fundo	59
	6.1.8	Quantificação de Recrutas e Adultos - Substratos Artificiais	59
7	Control	e Populacional	61
7	7.1 Co	ntrole Físico	63
	7.1.1	Raspagem	64
	7.1.2	Filtração	64
	7.1.3	Jateamento	64
	7.1.4	Radiação Ultravioleta	64
	7.1.5	Campo Magnético	65
	7.1.6	Corrente Elétrica	65
	7.1.7	Ultrassom	65
	7.1.8	Turbulência	65
7	7.2 Co	ntrole Químico	66
	7.2.1	Revestimentos	66
	7.2.2	Ajuste de pH	67

	7.2.	3 MXD-100	67	
	7.2.	4 Ozônio	68	
	7.2.	5 Diclorocianurato de Sódio	68	
	7.2.	Outras Formas de Cloro	69	
	7.2.	Veligon [Poly (Dimethyl Diallyl Ammonium Chloride)]	70	
	7.2.	Sulfato de Cobre	70	
	7.2.	Clam-Trol Ct-2 / Spectrus Ct1300	70	
	7.2.	10 H-130 (Cloreto de Didecyl Dimethyl Ammonium)	70	
	7.2.	11 Bayluscide	71	
	7.2.	12 BULAB 6002	71	
	7.2.	13 Bioencapsulados	71	
	7.2.	14 Cloreto de Amônio	72	
7.	.3	Controle Biológico	72	
7.	.4	Destinação	73	
	7.4.	Correção de pH e Fertilização do solo	73	
	7.4.	2 Nutrição animal	73	
8	Açõ	es de Prevenção, Monitoramento e Controle	79	
8.	.1	Outros Países	79	
8.	.2	Órgãos Federais	80	
8.	.3	Órgãos Estaduais	82	
8.	.4	Órgãos Municipais	83	
8.	.5	Comitês de Bacia Hidrográfica	83	
8.	.6	Reservatórios e Geração de energia	83	
8.	.7	Captação, Tratamento e Distribuição de Água	85	
8.	.8	Aquicultura	85	
8.	.9	Pesca e Navegação	86	
8.	.10	Hidrovias	86	
8.	.11	Instituições de Pesquisa	87	
8.	.12	Organizações não Governamentais (ONGs).	90	
9	Out	ras Aplicações	90	
9.	.1	Bioacumulação	90	
	9.1.	Indicador Sanitário	91	
	9.1.	2 Genotoxicidade	91	
10	C	onsiderações Finais	91	
11	11 Referências			

LISTA DE FIGURAS

Figura 1 Vista lateral da veliconcha de *Limnoperna fortunei*, sob microscopia eletrônica de varredura. Charneira (C); demarcação da glândula conchífera (GC); prodissoconcha I (PI); prodissoconcha II (PII). (Preparação e foto: G. Figueiredo e M.C.D. Mansur). Fonte: Mansur et al. (2012), com permissão do autor.

Figura 2 Mexilhão dourado *Limnoperna fortunei*: A) valva exibindo padrão de coloração e contorno triangular (Umbo, U; Carena, C; Topo, T); B) macroaglomerado coletado no lago Guaíba, Porto Alegre, Rio Grande do Sul. Foto: M.C.D. Mansur, com autorização do autor e editores.

Figura 3 Ciclo de vida do mexilhão-dourado: A) mórula ciliada, B) a E) trocóforas I a IV (comprimentos respectivos de $80\text{-}125~\mu m$); estágios valvados, F) a larva "D" ($100\text{-}130~\mu m$), G) véliger de charneira reta ($140\text{-}180~\mu m$), H) véliger umbonado ($190\text{-}230~\mu m$), I) pedivéliger ($230\text{-}270~\mu m$) e J), a pós-larva ou plantígrada ($300~\mu m$) bentônica epifaunal. Fonte: adaptado de Mansur et al., 2012, com permissão dos autores e editores.

Figura 4 Substratos naturais utilizados por *Limnoperna fortunei* no Lago Guaíba, RS, Brasil: A, assentamento sobre o rizoma do "junco" *Scirpus californicus*; B, "mussel beds" sobre *Scirpus californicus* no segundo ano da invasão; C, juncais em 2001, antes da invasão; D, modificação da paisagem, após 2 anos de assentamento nos rizomas; E, aglomerado sufocando o bivalve nativo *Diplodon* sp.; F, aglomerado sufocando o bivalve nativo *Leila blainvilliana*; G, no umbílico do gastrópode *Pomacea canaliculata* (Lamarck, 1822); H, aglomerados sobre ramos do "sarandi" *Cephalanthus glabratus*; I, conchas roladas, modificando a paisagem das praias na orla (Fotos: M.C.D. Mansur). Santos et al.(2012), com permissão dos autores e editores.

Figura 5 Substratos artificiais utilizados por *Limnoperna fortunei*: 3A, filtro autolimpante obstruído; 3B, detalhe da tampa; 3C, cilindros do interior do mesmo filtro; 3D, início do processo de limpeza de uma bomba captadora de água incrustada; 3E, bomba içada com guindaste pelo teto; 3F, grade protetora da bomba; 3G, trapiche de marina; 3H, casco de embarcação utilizada para pesca no Lago Guaíba e Lagoa dos Patos, sendo transportada por rodovia para outro manancial, oferecendo risco de contaminação. Fotos: A, B, C Gustavo Darrigran, www.malacologia.com.ar; D, E, F José Imada, CORSAN; G, Augusto Chagas: Biociências, 2004, 13(1); H, M.C.D. Mansur: Revista Brasileira de Zoologia 2003, 20(1). Fonte: Santos et al. (2012), com permissão dos autores e editores.

Figura 6 Cronologia da Invasão e dispersão de *Limnoperna fortunei* na América do Sul, anteriormente ao registro no rio São Francisco. Fonte: Oliveira et al. (2015), autorizado pelo editor (Springer) e pelos autores.

Figura 7 Distribuição *Limnoperna* fortunei na América do Sul, incluindo registros antigos (pontos negros) e atuais relacionados (pontos vermelhos dentro do círculo tracejado) (CBEIH 2015, Oliveira et al., 2015). As bacias são indicadas no mapa pelos números: 1) Costa do Caribe, 2) Bacia do Magdelena, 3) Bacia do Orinoco, 4) Costa norte do Atlântico, 5) Bacia Amazônica, 6) Bacia do Tocantins, 7) Nordeste Atlântico Ocidental, 8) Bacia do Parnaíba, 9) Costa Atlântica do Atlântico Leste, 10) Bacia do São Francisco, 11) Costa Atlântica Leste, 12) Bacia do Prata (Bacia do Paraná), 13) Costa Atlântica do Sudeste, 14) Bacia do Colorado, 15) Bacia Negra, 16) Costa do Atlântico Sul, 17) Central Patagonia Highlands, 18) Costa do Pacífico - Colômbia / Equador, 19) Costa do Pacífico - Peru, 20) Costa do Pacífico - Norte do Chile, 21) Costa do Pacífico - Sul do Chile, 22) Região de La Puna, 23) Salinas Grandes Basin, 24) Mar Chiquita Basin, e 25) Pampas Region. Fonte: Barbosa et al. (2016), com permissão dos autores e editores.

Figura 8 Usinas Hidrelétricas brasileiras com registros de ocorrência do mexilhão-dourado. As coordenadas listadas se referem ao eixo dos barramentos aproximadamente (de acordo dados apresentados na Tabela 2). Autor do mapa: Thiago Bazan e Daniel Pereira. Fonte: ver Tabela 2.

Figura 9 Unidades de Conservação (UCs) Estaduais e Federais junto de cursos d'agua colonizados pelo mexilhão-dourado (de acordo dados apresentados na Tabela 3). Autor do mapa: Thiago Bazan e Daniel Pereira. Fonte: ver Tabela 3.

Figura 10 Distribuição potencial de *L. fortunei* nos sistemas do rio brasileiro com base em limiares mais baixos de concentração de cálcio (A) e SI_{calcita} (B). Consideramos o baixo risco (cinza pálido) de ocorrência de *L. fortunei* em rios onde a concentração média de cálcio estava entre 0,0 e 1,0 mg l⁻¹ e SI_{calcita} foi <-4,0, risco médio (cinza escuro) entre concentrações de cálcio de 1,0 e 3,0 mg l⁻¹ e SIcalcite entre -4,0 e -3,0, e alto risco (preta) em que a concentração de cálcio foi> 3,0 mg l⁻¹ e a calcita SI foi> -3,0. Fonte: Oliveira et al. (2010), com permissão dos autores.

Figura 11 Distribuição potencial prevista de *L. fortunei* nos sistemas hidrográficos brasileiros com base no modelo GARP calibrado para distribuições observadas no Pantanal: (A) variável: SI_{calcite}, AUC = 0,82, Precisão = 94%, erro de omissão = 5,8% (B) variáveis : Concentração de cálcio, condutância, pH, temperatura da água, oxigênio dissolvido, AUC = 0,92, precisão = 97%, erro de omissão = 2,9%. Consideramos a probabilidade de estabelecimento de *L. fortunei* como baixa (cinza pálido) quando menos de 5% dos modelos predisseram a ocorrência, médio (cinza escuro) quando 5 a 50% dos modelos previram a ocorrência e a probabilidade alta (preta) quando Mais de 50% dos modelos previram a ocorrência. Fonte: Oliveira et al. (2010), com permissão dos autores.

Figura 12 Distribuição geográfica potencial prevista da *L. fortunei* nos sistemas hidrográficos brasileiros com base no modelo Maxent, calibrado com base em registros no Pantanal: (A) variável: SI_{calcite}, AUC = 0,82, valor limiar = 3,0 (B) variáveis: concentração de cálcio, Condutância, pH, temperatura da água e oxigênio dissolvido, AUC = 0,96, valor limiar = 5,5. Maxent produz uma previsão contínua com valores variando de 0 a 100, em regiões com melhores condições previstas: cinza claro (entre 0,0 e valor de limiar, baixo risco); cinza escuro (entre valor limiar e 50, risco médio); preto (50-100, alto risco). Fonte: Oliveira et al. (2010), com permissão dos autores.

Figura 13 Mapas des médias (A) e desvios (B) dos melhores cenários de distribuição potencial gerados pelos quatro tipos de algoritmos (Mahalanobis Distance, Domain, Garp e Maxent). Fonte: Campos et al. (2014), com permissão dos autores.

44

Figura 14 Perda de cobertura vegetal do junco devido à incrustação do mexilhão-dourado nas margens do Lago Guaíba. Foto: M.C.D. Mansur, autorizada pela autora.

Figura 15 Mexilhão-dourado incrustado em rizomas de sarandi e de palhoça (*Cephalanthus glabratus*) nas margens do Lago Guaíba, formando colchões contínuos sobre o substrato arenosos denominados "*mussel bed*". Foto: M.C.D. Mansur, autorizada pela autora.

Figura 16 Estação da Corsan no Rio Grande do Sul mostrando a colonização de tanques pelo mexilhão-dourado e o resíduo removido. Foto: M.C.D.Mansur 52

Figura 17 Incrustação do mexilhão dourado em tanques redes para o cultivo de peixes no Vale do Paranapanema, em São Paulo: A) mexilhão dourado aderido à tela do tanque-rede, neste caso com predominância de indivíduos maiores que 5mm; B) aos flutuadores do tanque-rede; depósitos das conchas do mexilhão na margem do reservatório, próxima à criação de peixes (Fotos: Márcia D. Oliveira); conchas de mexilhão dourado acumuladas no local de limpeza dos tanques-rede (Foto: Luiz Ayroza). Fonte: Oliveira et al. (2014).

Figura 18 Eclusas na bacia do Rio Jacuí, Rio Grande do Sul apresentando substratos naturais e artificiais contaminados pelo mexilhão dourado, assim como os cascos de embarcações. Fotos: M.C.D. Mansur, autorizada pelo autor.

Figura 19 Etapas do protocolo PCR de detecção de presença e ausência de larvas do mexilhão-dourado. Fonte: Tschá et al. (2012).

Figura 20 Coleta de amostras de plâncton para quantificação de larvas de *L. fortunei*. A) filtração em rede de plâncton, B) rede de plâncton, C) bomba de sucção, D e E) remoção da amostra da rede e F) fixação da amostra em álcool 80%. Fonte: Santos et al. (2012b), com autorização dos autores e editores.

Figura 21 Quantificação de larvas de do mexilhão-dourado. A) amostra na placa de contagem, B) estereomicroscópio com amostra em exame, C) amostra sendo observada, D e E) larvas exibindo o véu. Fonte: Santos et al. (2012b), com autorização dos autores e editores.

Figura 22 Etapas do protocolo qPCR de detecção de presença e ausência de larvas do mexilhão-dourado. Fonte: Endo & Nogata (2012).

Figura 24 - Concha raspadora para coleta de incrustações do mexilhão-dourado. Fonte: Pereira et al., 2012.

Figura 25 Substrato artificial de madeira em forma de "X" para amostragem de indivíduos recrutas e adultos do mexilhão-dourado. Fonte: Pereira et al. (2012), com autorização dos autores e editores 62

Figura 26 Tijolos de cerâmica utilizados como substrato artificial amostragem de indivíduos recrutas e adultos do mexilhão-dourado. Fonte: Pereira et al. (2012), com autorização dos autores e editores 62

Figura 27 Tijoletas de cerâmica utilizados como substrato artificial amostragem de indivíduos recrutas e adultos do mexilhão-dourado. Fonte: Pereira et al. (2012), com autorização dos autores e editores.

LISTA DE TABELAS

Tabela 1 Enquadramento sistemático de Limnoperna fortunei.

10

Tabela 2 – Usinas Hidrelétricas brasileiras com registros de ocorrência do mexilhão-dourado. As coordenadas de localização listadas se referem ao eixo dos barramentos aproximadamente.

Tabela 3 Unidades de Conservação (UCs) Estaduais e Federais junto de cursos d'aguas colonizados pelo mexilhão-dourado. A localização se refere a um ponto mais próximo dos cursos d'aguas colonizados.

34

Tabela 4 Principais vetores responsáveis pela dispersão de propágulos do mexilhão-dourado nas diferentes fases de desenvolvimento do organismo invasor, os quais apresentam risco de introdução e dispersão do mexilhão-dourado nas bacias não contaminadas do Brasil, em especial a bacia do rio Amazonas e dos rios Tocantins-Araguaia. Fonte: Darrigran & Mansur (2009), Belz (2009)

Tabela 5 Resumo dos resultados de testes de agentes de controle químico testados com *Limnoperna fortunei*. Toxicante [nome comercial]: (1) 2,5 '-dicloro-4' -nitrosalilcarbonilida (ingrediente ativo: 70%) [Bayluscide WP70]; (2) Dióxido de cloro; (3) Polímero de cloreto de dialildimetilamônio (ingrediente ativo: 40%) [Veligon TL-M]; (4) cloreto de didicil dimetil amónio (ingrediente ativo: 50%) [H130M]; (5) Cloreto de N-alcilo cloreto de dimetilbenzilamónio (ingrediente ativo: 50%) [Spectrus CT1300]; (7) Dicloreto de poli (oxietileno (dimetilmino) etileno (dimetilminio) etileno) [BULAB 6002]; (8) Dicloreto de poli (oxietileno (dimetilminio) etileno) [BULAB 6002]; (9) Cloreto de polidialildimetilamónio (microencapsulado); (10) Cloreto de potássio; (11) Cloreto de potássio (microencapsulado); (12) Amos quaternários + extratos de tanino [MXD-100]; (13) taninos Schinopsis balansae a 70% [ECOTEC-L]; (14) taninos Schinopsis balansae a 74% [ECOTEC-UA]; (15) taninos Schinopsis balansae a 86,5% [ECOTEC-MC]; (16) Cloreto de sódio; (17) Dicloroisocianurato de sódio; (18) hidróxido de sódio; (19) Hipoclorito de sódio; (20) Amónia total; (21) Ácido tricloroisocianúrico; (22) Amoníaco (NH3-N) unido; (23) Permanganato de potássio; (24) Sulfato de cobre. Fonte: Claudi & Oliveira (2015), com autorização da Springer e dos autores.

1 BIOLOGIA E ECOLOGIA

1.1 TAXONOMIA

A espécie *Limnoperna fortunei* (Dunker, 1857), conhecido popularmente no Brasil como "mexilhão-dourado" e internacionalmente como "golden mussel", é uma das duas espécies de mexilhão de água doce da família Mytilidae, a qual está representada em maior parte por mexilhões que habitam oceanos e estuários. O mexilhão-dourado tem distribuição original restrita à China, mas se expandiu para outros países da Ásia e para a América do Sul (ver item 2). O enquadramento sistemático de *L. fortunei* segue conforme Tabela 1.

Tabela 1 Enquadr Categorias Taxonômicas	ramento sistemático de <i>Limnoperna fortunei</i> . Classificação
Reino:	Animalia
Filo:	Mollusca
Classe:	Bivalvia Linné, 1758
Ordem:	Mytiloida Férrusac, 1822
Família:	Mytilidae Rafinesque, 1815
Gênero:	Limnoperna Rochebrune, 1882
Espécie:	Limnoperna fortunei (Dunker, 1857)

Até a década de 2010, os estudos taxonômicos apontavam que o gênero *Limnoperna* Rochebrune, 1882 compreendia nove espécies, sendo *L. fortunei* (Dunker, 1857), o único representante do gênero e da família Mytilidae em água-doce, e as demais espécies exclusivamente estuarinas. Atual revisão do complexo de espécies enquadradas no gênero *Limnoperna* realizada por Colgan & Costa (2013), com base em sequências de DNA, concluiu que as espécies estuarinas compreendiam um complexo distinto, atribuídas ao gênero *Xenostrobus* Wilson, 1967, incluindo espécies invasoras estuarinas como *Xenostrobus securis* Lamarck, 1819.

Considerando os avanços citados na taxonomia, *L. fortunei* foi confirmada como a única espécie do gênero em água-doce, mas não o único Mytilidae. Em relação de simpatria com *L. fortunei* no Cambodia e ocupando os mesmos habitats, uma espécie foi descrita para o rio Mekong inicialmente reconhecida como Dreissenidae, *Dreissena harmandi*. Na revisão taxonômica realizada por Morton & Dinesen (2010), com base em caracteres anatômicos, concluiu-se que o bivalve anteriormente enquadrado em Dreissenidae, na verdade se tratava de um Mytilidae. Além disso, foi

realizada uma reavaliação do gênero *Sinomytilus*, para o qual transferiu a espécie anteriormente descrita para o gênero *Dreisssena*. Desta forma, *Sinomytilus harmandi* (Rochebrune, 1881) se tornou o segundo Mytilidade que vive em água doce, juntamente com *L. fortunei*. Mas até o momento não foram registradas introduções de *S. harmandi* fora da sua área original de distribuição.

O mexilhão-dourado difere das espécies invasoras da família Dreissenidae, mexilhão-zebra (*Dreissena polymorpha*) e mexilhão-guaga (*Dreissena rostriformis bugensis*), pela ausência de septo, estrutura interna típica da região umbonal da concha de Dreissenidae.

1.2 ATRIBUTOS DA ESPÉCIE INVASORA

Considerando os critérios estabelecidos pela Estratégia Nacional sobre Espécies Exóticas Invasoras, Resolução CONABIO nº 5, de 21 de outubro de 2009, o mexilhão-dourado é enquadrado na categoria "Espécie Exótica Invasora", pois sua introdução, reintrodução ou dispersão representa risco ou impacta negativamente a sociedade, a economia ou o ambiente (ecossistemas, habitats, espécies ou populações). As espécies exóticas invasoras são aquelas que, uma vez introduzidas a partir de outros ambientes, adaptam-se e passam a se reproduzir e proliferar, frequentemente ocasionando alterações nos processos ecológicos naturais, prejudicando as espécies nativas, habitats e ecossistemas (MMA, 2016). De acordo com Darrigran & Damborenea (2011), *L. fortunei* é considerada uma espécie engenheira, devido às alterações estruturais potenciais que pode causar em função de sua capacidade de filtração e de macroaglomeração.

Boltovskoy (2015) ressalta que o sucesso da invasão e dispersão do mexilhão-dourado na América do Sul se deve a cinco fatores chave, sendo dois destes fatores atributos do bivalve: (1) a larva livre natante, a qual facilita a dispersão do molusco no plâncton e 2) um adulto séssil e bissado, que ocupa substratos consolidados, inclusive cascos de navios, criando incrustações que podem ser transportadas por longas distâncias. Os demais fatores citados por Boltovskoy (2015) são relacionados à civilização humana, os quais constituem vias de introdução e vetores de dispersão em ambiente intercontinental e continental: 3) aumento da interconectividade entre bacias via hidrovias, transporte de embarcações via terrestre, transposição de bacias; 4) construção de reservatórios, e 5) crescimento de navegação em águas continentais. Estes fatores que influenciam na invasibilidade de áreas geograficamente distintas da área de distribuição original do mexilhão-dourado serão discutidos ao longo do documento nos itens Impactos Ambientais, Impactos Econômicos e Processo de Invasão.

Outros atributos do invasor, os quais serão discutidos com mais profundidade ao longo deste documento, também podem ser citados como fatores relevantes para o sucesso da invasão no continente sul americano: reprodução quase contínua durante um ciclo anual (Boltovskoy et al., 2015a), tolerância à ampla faixa de pH (Pereira, 2014), tolerância a baixa concentração de cálcio

(Oliveira et al., 2010a), tolerância a dessecação (Darrigran et al, 2004), e sobrevivência a passagem pelo trato digestivo de algumas espécies de peixes (Belz, 2009).

1.3 Morfologia

1.3.1 LARVA

A morfologia externa das fases larvais do mexilhão-dourado se encontra descrita em Santos et al. (2005). Mansur et al. (2012) apresenta uma chave dicotômica para diferenciar as larvas dos demais moluscos límnicos nativos e invasores das larvas de *L. fortunei*. Uma descrição sumarizada da larva tipo veliconcha (Figura 1), apresentada por Mansur et al. (2012), é transcrita a seguir: "apresenta a charneira reta, sem deflexão central e sem projeções nas extremidades terminais; a superfície externa das valvas subdividida em prodissoconcha I, ocupando aproximadamente 2/3 da altura, seguida da prodissoconcha II, que ocupa o 1/3 restante. A prodissoconcha I é formada na fase larvar "D", apenas pela produção da glândula conchífera que deixa uma demarcação em forma de pequenos furos na região central próxima da charneira. Quando o manto larvar se completa, a concha passa a ser produzida apenas pelas bordas do manto adquirindo então as demarcações comarginais estriadas que acompanham o crescimento da concha e formam a prodissoconcha II. Quando a veliconcha se completa, temos a larva na fase de véliger que envolve todo o corpo protegendo-o, quando fechada. Quando entreabre, expõe o véu, um órgão ciliado, responsável pela locomoção do animal. Os movimentos da larva são geralmente circulares e verticais".

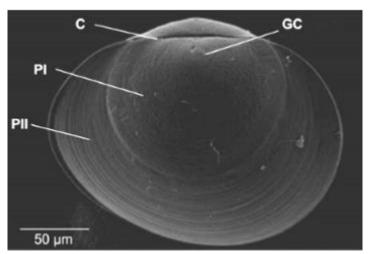


Figura 1. Vista lateral da veliconcha de *Limnoperna fortunei*, sob microscopia eletrônica de varredura. Charneira (C); demarcação da glândula conchífera (GC); prodissoconcha I (PI); prodissoconcha II (PII). (Preparação e foto: G. Figueiredo e M.C.D. Mansur). Fonte: Mansur et al. (2012), com permissão do autor.

1.3.2 ADULTO

Aspectos da morfologia interna e externa de indivíduos adultos de *L. fortunei* encontram-se detalhadamente descritos em Mansur et al. (2012) e Morton (2015a). Assim como os demais bivalves, o mexilhão-dourado possui duas valvas, sendo estas de contorno triangular modioliforme¹ (Morton, 2015b), com comprimento variando entre 2,5 e 6 cm (Mansur et al., 2012) (Figura 2). Esta forma não é encontrada entre os demais bivalves de água doce, exceto entre alguns representantes da família Dreissenidae nativos da América do Sul. A cor externa da concha varia entre marrom escuro e esverdeado acima e castanho claro abaixo da carena, sendo internamente violácea (Morton, 1973). O bivalve apresenta sifões curtos que consistem em simples aberturas desprovidas de tentáculos ou papilas (Mansur et al., 2012; Morton, 2015a). Quanto às brânquias, é importante ressaltar que os cílios formam correntes para selecionar partículas, que seguem até os palpos labiais e destes em direção à boca. Mansur et al. (2012) descreveram 5 correntes de aceitação em cada lado do molusco, o que os autores relacionam com sua elevada eficiência de filtração quando comparado a outros bivalves, como foi mencionado por Sylvester et al. (2006).

De acordo com Mansur (2012), o pé do animal adulto é muito reduzido, dificultando sua locomoção, quando desprendido do substrato. É formado por um tecido com diferentes tipos celulares envolvidos nos mecanismos de adesão e locomoção, com inúmeras vilosidades, pelos e muco em toda a superfície externa (Fróes et al, 2012). Outra função importante do pé é a produção de fios de bisso, os quais são secretados por uma glândula localizada na parte dorsal do interior do pé (Mansur, 2012), numa região reforçada por fibras de colágeno, formada por vários canalículos (Fróes et al, 2012). Ohkawa et al. (2009) purificaram uma proteína Dopa com massa molecular 96kDA precursora do bisso, cujas sequências de aminoácidos dos fragmentos compreendem dois hexapeptídeos e quatro decapéptidos repetitivos (Lys- (Hyp / Pro) -Thr- (Gln / Tyr) -Dopa- (Ser / Thr) - (Asp / Thr) -Glu-Tyr-Lys).

Figura 2. Mexilhão-dourado *Limnoperna fortunei*: A) valva exibindo padrão de coloração e contorno triangular (Umbo, U; Carena, C; Topo, T); B) macroaglomerado coletado no lago Guaíba, Porto Alegre, Rio Grande do Sul. Foto: M.C.D. Mansur, com autorização do autor e editores.

¹ Concha com forma típica do gênero Modiola, triangular com região posterior arredondada.

1.4 REPRODUÇÃO E CICLO DE VIDA

Indivíduos >5 mm atingem a maturidade sexual (Darrigram et al., 1999), o que ocorre entre 3 e 4 meses (Cataldo et al., 1999; Darrigram et al., 1999). Segundo Callil et al. (2012), não existe dimorfismo sexual evidente, mas padrões de textura e coloração no manto permitem diferenciar os indivíduos machos das fêmeas. Alguns autores citam casos raros de hermafroditismo entre populações (Darrigran et al., 1998b; 1999; Uliana & Callil, 2006; Giglio et al., 2016), os quais não ultrapassam 0,6% (Boltovskoy et al., 2015a), mas mesmo nestes casos os gametas masculinos e femininos são desenvolvidos em folículos distintos (Callil et al., 2012).

Os gametas são liberados pelos indivíduos machos e fêmeas na coluna da água, onde são fecundados externamente ao animal (Damborenea & Penchaszadeh, 1999; Mansur, 2012). Quanto à fecundidade dos ovos, não existem dados até o momento (Karatayev et al., 2015). De acordo com Boltovskoy et al. (2015a), estudos sobre o ciclo gametogênico na América do Sul, demonstraram que espermatozoides e óvulos maduros foram registrados ao longo de todo o ano, com vários eventos de propagação intermitentes, resultando em reprodução relativamente contínua e marcada por picos sazonais de primavera e no final do verão, com produção de larvas durante 6 a 10 meses ao longo do ano. Segundo os mesmos autores, em Hong Kong, ocorrem dois picos anuais de reprodução, os quais são limitados pela baixa temperatura e no Japão a produção de larvas fica restrita a 1-2 meses nos períodos mais quentes. Segundo Morton (1982), o início da gametogênese provavelmente está associado a múltiplos fatores, especialmente aqueles relacionados a qualidade da água. Pereira (2014) verificou que a liberação de larvas na primavera esteve relacionada à elevação da condutividade, da alcalinidade e do teor de sulfatos. Boltovskoy et al. (2015a) especulam que além da temperatura, outros fatores, como o pH, salinidade, oxigênio dissolvido, sólidos em suspensão, clorofila a, e ciclos de inundação-seca desencadeiam o ciclo reprodutivo.

Santos et al. (2005) descreveram as fases de desenvolvimento larvar que integram a fase planctônica de uma população de mexilhão-dourado no Lago Guaíba, RS, Brasil, com base em amostras de plâncton e identificaram as seguintes fases (Figura 3): estágios planctônicos sem valvas, A) mórula ciliada, B) a E) trocóforas I a IV (comprimentos respectivos de 80-125 μm); estágios valvados, F) a larva "D" (100-130 μm), G) véliger de charneira reta (140-180 μm), H) véliger umbonado (190-230 μm) e I) pedivéliger (230- 270 μm). Segundo Mansur et al. (2012), após a fase I, o véu é absorvido e é desenvolvido o pé para que o animal deixe o plâncton e recrute o substrato, constituindo assim o início da fase bentônica; enquanto que na fase seguinte (J), a pós-larva ou plantígrada (≅300 μm) secreta fios de bisso através da glândula bissogênica do pé, permitindo a aderência ao substrato, quando adquire hábito epifaunal (Figura 3). Na fase bentônica, o *L. fortunei*

viverá por um período de 2 a 3 anos, longevidade um pouco mais curta, quando comparado aos Dreissenidae invasores, os quais atingem até 5 anos (Karatayev et al., 2015).

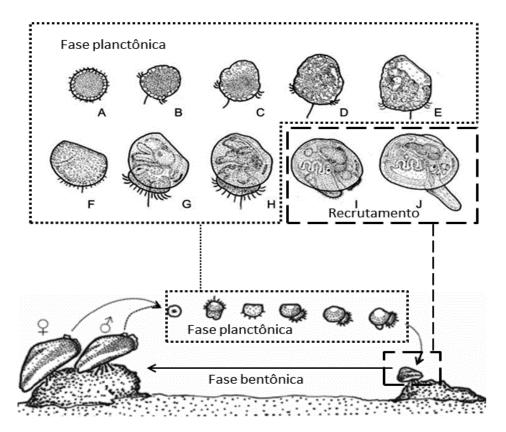


Figura 3. Ciclo de vida do mexilhão-dourado: A) mórula ciliada, B) a E) trocóforas I a IV (comprimentos respectivos de 80-125 μ m); estágios valvados, F) a larva "D" (100-130 μ m), G) véliger de charneira reta (140-180 μ m), H) véliger umbonado (190-230 μ m), I) pedivéliger (230- 270 μ m) e J), a pós-larva ou plantígrada (300 μ m) bentônica epifaunal. Fonte: adaptado de Mansur et al., 2012, com permissão dos autores e editores.

1.5 HABITATS

O mexilhão-dourado é uma espécie de água doce pouco seletiva quanto aos habitats aquáticos, podendo viver em regiões litorâneas de lagos, lagoas, lagunas e represas, margens e canais de rios e arroios. No entanto, esta espécie apresenta certa tolerância às águas salobras, tendo registros em regiões estuarinas da Ásia, cuja salinidade não ultrapassa 13‰ (Ricciardi, 1998). Em contrapartida, é mais restritivo quanto aos valores de salinidade (<2‰), nos quais o molusco apresenta populações estabelecidas (Morton, 1976). Colling et al. (2012) demonstrou que o avanço do mexilhão-dourado para a área estuarina na Laguna dos Patos foi decorrente de eventos climáticos El Niño, que propiciaram a diminuição da salinidade no estuário em função da maior descarga de água doce. Após estes cenários de limnificação que ocorreram entre 2002-2003 e 2009-2010, o controle populacional se deu naturalmente devido ao aumento da salinidade, o que ocasionou a mortalidade da espécie no estuário, observando-se após o evento apenas populações na parte límnica da laguna. Esta pequena janela de tempo de predominância da limnificação pode ter sido suficiente para ampliar a distribuição

do molusco em tributários e sangradouros, consistindo na provável porta de entrada desta invasora na Laguna Mirim.

O mexilhão-dourado colonizou diferentes ambientes aquáticos na América do Sul, como córregos, rios, represas, lagos, lagoas costeiras, lagunas em cenários de baixa salinidade, como citado acima, e deltas de rios (Correa et al., 2015). Pode ser encontrado em diferentes meso habitats e microhabitats anteriormente ocupados apenas por organismos não incrustantes. Os únicos organismos nativos se fixam em substratos duro são espécies de Porifera, Bryozoa, bivalves Sphaeriidae do gênero *Eupera*, os quais se fixam por fios de bisso em vegetação aquática, sem formar aglomerados (Mansur & Veitenheimer, 1975), assim como espécies de Dreissenidae dos gêneros *Mytiliopsis* nativos da Bacia Amazônica, os quais formam aglomerados muito pequenos (Alvarenga & Ricci, 1989), quando comparados ao mexilhão-dourado.

Em córregos e rios o mexilhão-dourado pode potencialmente ocorrer tanto em mesohabitats de corredeira como remanso, fixado aos substratos duros submersos (Pereira, observação pessoal). Em lagos e lagoas costeiras, pode ser encontrado tanto no litoral quanto em zonas profundas, sobre substratos duros ou sobre outros organismos, que apresentam carapaça rígida permitindo a fixação pelos fios de bisso. A ocorrência em zonas profundas é mais escassa e pode tender a zero, dependendo da profundidade do corpo lêntico. Em sistemas deltaicos, são encontrados em canais distributários entre ilhas e pequenas enseadas denominadas sacos, onde se aderem às macrófitas aquáticas (Pfeifer & Pitoni, 2003). Em planícies de inundação de grandes rios ocorrem em baías (Oliveira & Barros, 2003). Nas represas a distribuição depende da profundidade, do fluxo e da constituição do substrato, podendo ocorrer até cerca de 14 m de profundidade em substratos de areia e seixo e fundo rochoso (Correa et al., 2015). Nas Lagunas, a distribuição nos habitats varia em função da entrada de cunha salina, havendo predominância de registros em cenários de limnificação de estuários, e altos índices de mortalidade em cenários de entrada de cunha salina (Capitoli et al., 2008).

Na fase larvar o mexilhão-dourado ocupa a coluna da água, integrando o plâncton. Nesta fase podem atingir densidade de 30.000 ind./m³ (Pereira, 2014), apresentando flutuações sazonais, com ausência de larvas em meses mais frios, assim como em meses mais quentes, quando o nível da água diminui. Quando adultos, os mexilhões ocupam substrato preferencialmente consolidado, mas podem também colonizar substratos não consolidados. Diversos substratos são citados na literatura (Figura 4), como: costões e fundos rochosos, galhos da macrófitas aquáticas emergentes e flutuantes (*Scirpus californicus*, *Juncus* spp., *E. crassipes*; *E. azurea*) (Mansur et al., 2003), raízes e galhos de vegetação ribeirinha (*Cephalanthus glabratus*) (Mansur et al., 2008), conchas de moluscos (Mansur et al., 1999; 2003; Santos et al., 2012), carapaças de crustáceos (Lopes et al., 2009), e cascos de quelônios (Cardoso, 2014), sendo este último apenas com base em experimentos de laboratório. Na ausência de

substratos duros, também pode se aderir ao silte estabilizado, portanto a ausência de substratos duros não consiste em um obstáculo à colonização de ambientes aquáticos (Correa, et al., 2012).

Substratos artificiais presentes em ambientes construídos pelo homem, assim como superfícies de meio de transportes, também são colonizados por esta espécie, entre eles: grades, turbinas, estacas, sistemas de resfriamento, paredões de concreto, bombas captadoras de água, comportas de reservatórios, píeres, barcos e motos aquáticas (Mansur et al., 2012; Correa et al., 2015; Figura 5).

Figura 4. Substratos naturais utilizados por *Limnoperna fortunei* no Lago Guaíba, RS, Brasil: A, assentamento sobre o rizoma do "junco" *Scirpus californicus*; B, "mussel beds" sobre *Scirpus californicus* no segundo ano da invasão; C, juncais em 2001, antes da invasão; D, modificação da paisagem, após 2 anos de assentamento nos rizomas; E, aglomerado sufocando o bivalve nativo *Diplodon* sp.; F, aglomerado sufocando o bivalve nativo *Leila blainvilliana*; G, no umbílico do gastrópode *Pomacea canaliculata* (Lamarck, 1822); H, aglomerados sobre ramos do "sarandi" *Cephalanthus glabratus*; I, conchas roladas, modificando a paisagem das praias na orla (Fotos: M.C.D. Mansur). Santos et al.(2012), com permissão dos autores e editores.

Figura 5. Substratos artificiais utilizados por *Limnoperna fortunei*: 3A, filtro autolimpante obstruído; 3B, detalhe da tampa; 3C, cilindros do interior do mesmo filtro; 3D, início do processo de limpeza de uma bomba captadora de água incrustada; 3E, bomba içada com guindaste pelo teto; 3F, grade protetora da bomba; 3G, trapiche de marina; 3H, casco de embarcação utilizada para pesca no Lago Guaíba e Lagoa dos Patos, sendo transportada por rodovia para outro manancial, oferecendo risco de contaminação. Fotos: A, B, C Gustavo Darrigran, www.malacologia.com.ar; D, E, F José Imada, CORSAN; G, Augusto Chagas: Biociências, 2004, 13(1); H, M.C.D. Mansur: Revista Brasileira de Zoologia 2003, 20(1). Fonte: Santos et al. (2012), com permissão dos autores e editores.

1.6 DINÂMICA POPULACIONAL

Segundo Karatayev et al. (2015), *L. fortunei* atinge um tamanho máximo de 30 mm, comparável ao tamanho do mexilhão-zebra. De acordo com Nakano et al. (2015), em regiões subtropicais, o mexilhão-dourado atinge 20 mm no primeiro ano de vida e 30mm no segundo ano. Em população de área portuária de Porto Alegre, no Lago Guaíba, no Rio Grande do Sul, Mansur et al. (2012) registraram um tamanho excepcional de 60 mm de comprimento. A longevidade de *L. fortunei* compreende um período de 2 a 3 anos (Karatayev et al., 2015). De acordo com os autores acima, a taxa de crescimento é dependente da temperatura enquanto o comprimento, de períodos com altas temperaturas. Os autores avaliaram curvas de crescimento do mexilhão-dourado no Alto Rio Paraná, onde as temperaturas estão acima de 20°C e verificaram que o bivalve pode atingir mais de

35 mm de comprimento, no primeiro ano de vida, enquanto que no Baixo Rio Paraná (10-28°C), cresce até aproximadamente 20 mm no primeiro ano. Relações entre o tamanho e biomassa de populações de *L. fortunei* variam entre corpos hídricos e períodos do ano, dependendo de condições de alimentação (Nakano et al., 2015). Cerca de 93% dos indivíduos com menos 1 mm morrem antes de atingir 2 mm e cerca de 80% dos mexilhões com 22 mm atingem 20-23 mm (Silvester et al., 2007).

1.7 FATORES LIMITANTES E TOLERÂNCIA AMBIENTAL

O mexilhão-dourado apresenta alta tolerância à poluição da água, tolera concentrações de cálcio muito baixas (até 1mg/L), o que favoreceu sua dispersão em águas pobres em cálcio de rios e lagos brasileiros; enquanto o mexilhão-zebra tolera o valor mínimo de 23 mg/L, o que provavelmente não tornaria viável sua sobrevivência na maioria das bacias hidrográficas do Brasil (Karatayev et al., 2015). O mexilhão-dourado requer a temperatura mínima de 15°C para se reproduzir, enquanto mexilhão-zebra requer 12°C e mexilhão-guaga, 5°C, o que também dificultaria a manutenção de populações destes dreissenídeos caso fossem introduzidos em águas brasileiras. Quanto a salinidade, o mexilhão-dourado tolera valores contínuos de 2‰ e descontínuos de até 23‰, motivo pelo qual sobreviveu a cenários de baixa salinidade no estuário da Lagoa dos Patos. Quanto a temperatura mínima e máxima para a sobrevivência de populações adultas, os autores acima apontam 0 e 35°C para o mexilhão-dourado.

No Pantanal, ocorre uma ampla variação das características limnológicas da água, quando comparado aos outros sistemas hídricos da América do Sul. Oliveira et al. (2011) verificaram que cenários de depleção de oxigênio dissolvido, baixo teor de cálcio, redução do pH, baixa clorofila *a*, bem como alta velocidade da água e alta concentração de sólidos em suspensão, afetam as populações do mexilhão-dourado, resultando em decréscimo de densidade populacional, em decorrência do sinergismo dessas variáveis. Os autores, no entanto, ressaltam que este evento provavelmente não impediria a persistência de populações no Pantanal e estabelecimento de populações viáveis em áreas de cabeceiras a montante.

De acordo com Karatayev et al. (2015), o mexilhão-dourado tolera até 0,5mg/L de oxigênio dissolvido. Oliveira et al. (2010a), avaliaram a mortalidade do mexilhão-dourado em um lago de planície de inundação no Pantanal, onde o evento de depleção de oxigênio pode durar semanas durante na fase de cheia, e verificaram a mortalidade destes organismos após 5 dias. Também constataram que uma população estabelecida no mesmo lago no ano de 2005 foi extirpada em 2006, devido à hipóxia. Testes laboratoriais realizados pelos autores corroboraram os dados de campo, e sugerem que a depleção anual de oxigênio poderia exercer um controle das densidades deste invasor, podendo resultar no desaparecimento das populações em alguns habitats.

Testes de laboratório demonstraram a sobrevivência do mexilhão-dourado em valores extremos de pH (4-11), após cinco dias de exposição (Pereira, 2014). Esta faixa de tolerância ao pH é comparável à faixa tolerada pelo díptero do *A. aegypti*. Além disso, também indica que há o risco de dispersão do mexilhão, quando este atravessa o trato digestivo de peixes que não apresentam aparato bucal adaptado para triturar as conchas, permitindo a sobrevivência do animal após ser liberado pela cloaca, já que alguns peixes apresentam pH estomacal entre 2 e 6 (Rotta, 2003).

1.8 RELAÇÕES TRÓFICAS

Neste item são discutidas as relações tróficas do mexilhão-dourado com relação ao seu papel como filtrador suspensívoro, especialmente sobre sua dieta alimentar, assim como a predação de larvas, recrutas e adultos pela fauna das áreas invadidas.

1.8.1 ALIMENTAÇÃO DO MEXILHÃO-DOURADO

O mexilhão-dourado é um ativo filtrador, alimentando-se de material em suspensão, como organismos fitoplanctônicos, zooplanctônicos, bactérias e sólidos suspensos. Sua capacidade de filtração é muito superior quando comparada a outras espécies bivalves de água-doce, como *Corbicula fluminea* e espécies marinhas de Mytilidae e Veneridae, assim como pode apresentar taxa de filtração maior que algumas espécies de *Dreissena*, quando em temperatura acima de 20°C (Sylvester, 2009). Segundo este autor, o fitoplâncton chega a suprir 97% das demandas básicas de energia de um mexilhão de 23 mm de comprimento, com base em informações de laboratório. Por meio de estimativa de densidades ao longo de 5 km do rio Luján (Argentina), com diferentes substratos, e com base nas taxas de filtração do molusco (200 mL mexilhão-¹.h-¹), ainda ressaltam que *L. fortunei* pode filtrar a terça parte do volume de água deste Rio, causando severos impactos sobre a comunidade planctônica (Sylvester et al., 2009).

A seletividade das espécies fitoplanctônicas na dieta de *L. fortunei* é amplamente explicada por uma combinação de formas de células, biovolume e os taxa de fitoplâncton disponíveis (Frau et al., 2016). Fachini et al. (2012) avaliaram a seletividade alimentar de *L. fortunei* em laboratório e constataram haver uma maior preferência por algas espinhosas (gêneros *Desmosdemus*, *Kirchneriella*, *Monactinus*, *Pediastrum*, *Scenedesmus*, *Staurastrum* e *Tetraedrum*) e filamentosas (gêneros *Aulacoseira*, *Mougeotia*, *Planktothryx*). Experimentos realizados por Frau et al. (2016) revelaram que este molusco preferiu algas com dimensão linear máxima de 20 a 100 μm, representantes de Desmidiales, Chlorococcales, Euglenophyceae e Chrysophyceae. A seletividade

alimentar do mexilhão-dourado diante da oferta de alimento constituído por cianobactérias foi avaliada em Gazullha e at al. (2012a, b), sendo verificado a preferência alimentar do molusco por cepas tóxicas, o que indica que deve apresentar alta resistência a cianotoxinas.

Outro estudo revelou a predominância (67%) da biomassa de organismos zooplanctônicos na dieta do mexilhão-dourado, com representantes de Protista, Rotifera, Nematoda, Cladocera, Copepoda, Ostracoda, além de suas próprias larvas, contabilizando um total de 156 taxa (Molina et al., 2015). Nos experimentos de Fachini et al. (2012), quanto à seletividade de organismos zooplanctônicos, os autores verificaram a preferência por rotíferos (gêneros Conochilus, Bdelloidea, Lecane, Lepadella e Trichocerca; Brachionidae), dentre os organismos zooplanctônicos. Os autores acima verificaram uma taxa de filtração média de 63 mL mexilhão⁻¹ h ⁻¹, de produção de pseudofezes de 34 mL mexilhão⁻¹ h ⁻¹ e de ingestão de 28 mL mexilhão⁻¹ h ⁻¹. Os microcrustáceos podem constituir uma importante fonte de alimento para ao bivalve invasor, o qual pode ingerir microcrustáceos maiores que 1.100 µm, uma faixa de tamanho maior do que aquela apresentada por microcrustáceos predados por Dreissena polymorpha em ambientes invadidos (Molina et l., 2011). Os rotíferos são a presa planctônica mais frequentemente predada pelo mexilhão-dourado, seguidos por cladóceros e náuplios de copepoda, os quais são selecionados de forma positiva pelo tamanho (Molina et al., 2015). A contribuição do fitoplâncton e do zooplâncton na dieta do mexilhão-dourado pode variar entre ecossistemas. Além disso, estudos de laboratório podem revelar hábitos distintos daqueles que ocorrem no ecossistema.

1.8.2 PREDAÇÃO DO MEXILHÃO-DOURADO

Quanto às fases larvais de peixes, Paolucci et al. (2010) apresenta dados importantes sobre a espécie *Prochilodus lineatus* (curimbatá). Os autores constataram que as larvas desta espécie se alimentaram intensamente de larvas véligers do mexilhão-dourado. Nos experimentos que comparavam a dieta constituída de zooplâncton enriquecido com véligers do molusco e sem enriquecimento (controle), para avaliar os efeitos das dietas sobre o crescimento das larvas do peixe, os autores constataram que a dieta enriquecida com véligers de *L. fortunei* melhora significativamente o crescimento de larvas de *P. lineatus*, o qual possivelmente tem preferência por este recurso alimentar que apresenta maior conteúdo energético quando comparados a outros recursos, além de ser mais facilmente capturado devido a baixa mobilidade. Paolucci & Thuesen (2015) verificaram que larvas de 18 espécies, incluindo membros mais abundantes de Characiformes e Siluriformes se alimentam de véligers do mexilhão-dourado na bacia do Rio da Prata.

Dentre 157 exemplares do peixe *Leporinus obtusidens* (20-55 cm de comprimento total) coletados no Rio da Prata, Costanera Norte, em Buenos Aires, 98 (72,1%) continham fragmentos de conchas de *L. fortunei*, abrangendo 14,5% do peso seco do conteúdo estomacal e 44,4% do conteúdo

intestinal (Penchaszadeh et al., 2000). Lopes & Vieira (2012) constataram a presença do mexilhão-dourado no conteúdo estomacal de 10 espécies de peixes nas zonas rasas o Canal São Gonçalo e Lagoa Mirim, Rio Grande do Sul: Crenicicha punctata (Frequência de ocorrência = 96,3%); Astyanax fasciatus (72,2%), Rineloricaria microleptogaster (55,6%), Pimelodus pintado (52,4%), Micropogonias furnieri (41,7%), Geophagus brasiliensis (42,1%), Rhamdia aff. quelen (31%), Hoplias malabaricus (20%) e Hypostomus commersoni (2,4%). Isaac et al. (2014) constatou a utilização do mexilhão-dourado na dieta de 15 espécies de peixes de três subsistemas da planície de inundação do Alto Rio Paraná (Brasil), os quais são listados a seguir em ordem decrescente de importância: Leporinus obtusidens, Leporinus friderici, Leporinus macrocephalus, Leporinus lacustres, Geophagus cf. proximus, Hoplias aff. malabaricus, Hoplosternum littorale, Leporinus elongatus, Leporinus macrocephalus, Pimelodus maculatus, Potamotrygon cf. falkneri, Pterodoras granulosus, Schizodon borellii, Schizodon nasutus, Serrasalmus maculatus, Trachydoras paraguayensis e Serrasalmus marginatus.

No reservatório de Ilha Solteira, no Alto Rio Paraná, Rosa et al. (2015) verificou a presença do mexilhão-dourado no trato digestivo de 13 espécies de peixes, destacando-se *Leporinus obtusidens*, *L. friderici e Piaractus mesopotamicus* pelo maior consumo, os quais apresentaram conchas quebradas no estômago e intestino, evidenciando a eficiência do aparelho bucal na trituração destes animais. Já outras espécies, *Pimelodus maculatus* e *Geophagus proximus*, apresentavam indivíduos intactos, o que pode conferir um risco a dispersão do bivalve invasor, pois pode sobreviver a passagem pelo trato digestivo.

Leporinus obtusidens, Rhinodoras dorbignyi e Brochiloricaria chauliodon apresentaram L. fortunei como integrante de sua dieta alimentar, de acordo com observações de conteúdo estomacal realizadas por Garcia & Montaldo (2015). Os autores ainda ressaltam o risco de contaminação por metais pesados para a população humana que consome estes peixes predadores do molusco, o qual tem alta potencial de bioacumulação de metais tóxicos (Soares et al., 2009; Villar et al., 1999).

Em sua revisão sobre a predação do mexilhão-dourado pela ictiofauna, Cataldo (2015) ressaltou que a lista de espécies de peixes predadores de *L. fortunei* aumentou constantemente. Cerca de 18 espécies foram identificadas até 2006 e após 7 anos, 50 espécies compunham a lista. Além disso, o autor constatou que: > 50% das espécies estão entre as espécies regularmente presentes em pescarias comerciais, prevalecendo as guildas onívoras, detritívoros e ictiófagos; espécies economicamente importantes substituíram uma dieta constituída de plantas e detritos para uma com dominância de mexilhões adultos; peixes desprovidos de dentição adequada para triturar conchas, também engolem espécimes inteiros, ou os sifões e bordas expostas do manto; em alguns casos 100% do conteúdo intestinal é composto pelo bivalve invasor, especialmente no verão; prevalece o consumo

seletivo de classes menores de tamanho do mexilhão; a pressão de predação é provavelmente alta, constituindo mecanismo significativo de modulação das populações do mexilhão. Entretanto, segundo os autores, a pressão da predação é provavelmente insuficiente para erradicar esta espécie invasora.

Cardoso (2014) avaliou a predação do mexilhão-dourado por cinco espécies de Chelonia da planície costeira do Rio Grande do Sul, em experimentos de laboratório, e verificou que *Phrynops hilarii* (Chelidae) e *Trachemys dorbigni* (Emydidae) consumiram respectivamente 40% e 37% dos mexilhões oferecidos nos experimentos, enquanto as demais espécies (*Acanthochelys spixii* e *Hydromedusa* tectifera) consumiram <2%. A presença de *L. fortunei* na dieta de *Trachemys dorbigni* já tinha sido registrada por Bujes & Verrastro (2007) numa população do Delta do Rio Jacuí, Rio Grande do Sul.

1.8.3 GENOMA MITOCONDRIAL

O genoma mitocondrial de *L. fortunei* foi recentemente descrito em Uliano-Silva et al. (2016). Os autores verificaram que o genoma mitocondrial desta espécie invasora não apresenta arranjo de genes conservado, quando comparado com outras espécies de Mytilidae, o que sugere um alto grau de recombinação gênica na mitocôndria deste clado. Além disso, codifica duas cópias de tRNALys e apresenta um pseudogene putativo para a sequência do gene atp8, o qual codifica um peptídeo de 27 aminoácidos contendo um códon de parada na armação. A análise filogenética do genoma mitocondrial completo disponível de Mytilidae, confirma a forte relação evolutiva entre espécies de Mytilus, enquanto que L. fortunei se posiciona num ramo mais ancestral da família. Uliano-Silva et al. (2015) ressalta que o gene HSP70s de L. fortunei pode estar relacionado ao sucesso da invasão do mexilhão-dourado, pois numa análise filogenética do HSP70 em moluscos, Uliano-Silva et al. (2014) verificaram que duas isoformas de HSP70 em L. fortunei estão evolucionariamente relacionadas a expansão observadas em Crassostrea gigas, também identificou duas proteínas relacionadas ao bisso (Mepf1 e Mepf2), na transcrição do mexilhão-dourado. Quanto ao Citocromo P450, de acordo com Uliano-Silva et al. (2015), L. fortunei tem um conjunto de genes CYP3As que não estão relacionados filogeneticamente com CYPs de nenhum outro bivalve. Segundo os autores estes genes estão relacionados à habilidade de suportar estresses ambientais durante o processo de invasão. Uliano-Silva et al. (2014), ainda ressaltam que o transcriptoma desta espécie invasora revelou oito genes envolvidos na via de sinalização de receptores, o que pode estar relacionado a um sistema imunológico adaptativo.

2 PROCESSO DE INVASÃO

O processo de invasão em águas continentais abrange cinco etapas, alguns relacionados a obstáculos que a espécie invasora deverá superar: sobreviver ao transporte, liberação ao ambiente aquático, estabelecimento da população, dispersão pela área invadida e impactos da invasão (Darrigran & Damborenea, 2009). O mexilhão-dourado foi introduzido na América do Sul de forma não-intencional via água de lastro. A espécie sobreviveu ao transporte e estabeleceu populações inicialmente no balneário Bagliradi, no estuário do Rio La Plata, na Argentina, por meio do qual se dispersou pela Bacia do Prata entre outras, gerando impactos ambientais e econômicos. Neste item é sintetizado o processo de invasão com base na cronologia de invasão, vias de introdução, vetores de dispersão e cenários potenciais futuros de invasão e dispersão em novas áreas na América do Sul e em outros continentes.

2.1 DISTRIBUIÇÃO GEOGRÁFICA NATIVA

A distribuição nativa de *L. fortunei* provavelmente era restrita a bacia do Rio Pearly na China (Xu, 2015; Morton, 1973).

2.2 ÁREAS INVADIDAS E CRONOLOGIA DE INVASÃO

A cronologia de áreas invadidas, amplamente descrita e discutida por diversos autores (Darrigran & Mansur et al., 2009; Xu, 2015; Ito, 2015; Oliveira et al., 2015), subsidia a compreensão do processo de invasão e a simulação de novos cenários de invasão e dispersão.

2.2.1 ÁSIA

Na China, a partir da bacia do Rio Pearly, o mexilhão-dourado foi transferido por navios durante as décadas de 1960 e 1970 para os estuários de rios nas regiões de Fujiang e Zhejiang, assim como do rio Yangtze (Xu, 2015). O mesmo autor comenta que após 1980, a espécie expandiu sua distribuição geográfica para as bacias do rio Huaihe, Amarelo e Haihe; para Tianjin, uma cidade no Mar de Bohai, no norte da China e também áreas em torno de Pequim. Mas anteriormente a 1960, provavelmente foi introduzido pelo homem no Camboja, Vietnã, Laos, Tailândia, e entre 1960 e 1980, na Coréia do Sul (Xu, 2015; Morton & Dinesen, 2010). No Japão, Ito (2015) relatou a cronologia da invasão, que inicia em 1990 no sistema hidrográfico dos rios Kiso-Nagara-Ibi; em 1992, novo registro é relatado para o Lago Biwa e rio Yodo; os rios Yahagi River e Tenryu apresentaram registros do invasor em 2004; posteriormente seguem registros de 2005 para lago Kasumigaura e para o canal de irrigação Kabura-gawa; em 2007, rios Uren e Tone são invadidos, e em 2008, rio Edo.

2.2.2 AMÉRICA DO SUL

A cronologia da invasão na América do Sul encontra-se detalhadamente descrita em Darrigran & Mansur (1999), quanto ao período de 1998 a 2004, e Oliveira et al. (2015) até o ano de 2015 (Figura 6). De forma resumida, na América do Sul a espécie foi inicialmente introduzida na Argentina no início da década de 1990 (Darrigran & Pastorino, 1995), sendo que o primeiro registro foi observado no Balneário Blagliardi, no estuário do Rio La Plata. A partir daí se dispersou pela margem argentina do estuário e posteriormente pela margem uruguaia, colonizando uma área extensiva do estuário do Rio La Plata. Em meados de 1998-1999, foram verificados os primeiros registros no Brasil, no Rio Grande do Sul, no Lago Guaíba (Mansur et al., 1999), na Lagoa Mirim (Burns et al., 2006) e no Delta do Jacuí (Mansur et al., 2003). Neste mesmo período, o bivalve invasor se dispersou por bacias de rios uruguaios, afluentes do Estuário do Rio La Plata. Registros de 1997 para o Rio Paraguai em Assunção (Paraguai), e de 1998, em Corumbá no Mato Grosso do Sul (Brasil), somados aos demais citados acima, mostram o amplo espectro de distribuição geográfica já nos primeiros anos de invasão (Oliveira et al., 2015). L. fortunei avançou 240 km/ano à montante na Bacia do Prata (Darrigran & Ezcurra de Drago 2000). Este avanço da dispersão se dá principalmente pelo transporte de indivíduos aderidos aos cascos de embarcações transportadas por água ou por terra. No ano de 2001, a dispersão avançou com registros na Usina Hidrelétrica de Itaipu, Bacia do Rio Paraná, no Brasil; Rio Uruguai, no Uruguai (Darrigran & Mansur, 1999). Segundo Darrigran & Ezcurra de Drago (2000), considerando ser a barragem de Itaipú uma barreira intransponível para o mexilhão-dourado invadir o reservatório de Itaipu, duas hipóteses são apresentadas: 1) introdução acidental por aves, mamíferos e humanos e 2) por meio de barcos que foram adquiridos em Porto Alegre e transportados para o reservatório. Um ano após a detecção em Itaipu, foram verificados 8.000 ind.m⁻² na barragem (Zanella & Marenda, 2002). Na grande bacia da Lagoa dos Patos, entre 2005 e 2012, a dispersão atingiu tributários do Lago Guaíba, sendo registrado no alto rio Jacuí, o rio dos Sinos (Mansur & Pereira, 2006; Hübel et al., 2009), rio Gravataí, rio Taquari e rio Caí (Terra et al., 2009). Entre 2009 e 2013 foram realizados os primeiros registros na Bacia do Rio Tramandaí, incluindo lagoas Peixoto, Quadros e Itapeva. Entre 2001 e 2005, ocorreu a maior dispersão do mexilhão no alto do rio Paraná, atingindo diversos reservatórios ao longo deste rio e também do rio Tietê. Em 2011-2012, foi detectado no reservatório de Furnas, no Rio Grande em Minas Gerais (Biólogo Paulo Formagio, comunicação pessoal) e no alto rio Uruguai, na UHE Barra Grande no Rio Pelotas (Agudo-Padrón & Porto Filho, 2013;). Em 2014, avançou no Mato Grosso para a Estação Ecológica Taimã (Oliveira et al., 2015). O registro mais recente foi ao nordeste do Continente na UHE Sobradinho, no rio São Francisco (BA; Barbosa et al., 2016).

Considerando as grandes regiões hidrográficas da América do Sul (Figura 7), o mexilhão-dourado se dispersou pela Costa Atlântica do Sudeste (Argentina), Grandes Salinas e Mar Chiquitita

(Argentina), Costa Atlântica Leste (desde o Uruguai até o Brasil, no Estado do Paraná), por praticamente toda grande Bacia do Prata (Brasil, Argentina, Uruguai e Paraguai), e por último se encontra no rio São Francisco, abrangendo parte dos estados da Bahia e Pernambuco (Barbosa et al., 2016). Está ausente nas demais regiões hidrográficas e países deste continente, associadas à costa do Pacífico e do Atlântico Norte. Países da costa do Pacífico apresentam menor atividade de navegação do que os países da costa do Atlântico, que somado ao fluxo veloz dos rios, conferem menor probabilidade de sustentar populações de *L. fortunei* em seus sistemas hidrográficos (Boltovskoy, 2015).

O processo de invasão do mexilhão-dourado em águas brasileiras ocorreu através de vários eventos de introdução, por meio de vetores não naturais, os quais transportaram propágulos de vários locais (Silva, 2012). Analisando 24 populações de *L. fortunei* (dez da Ásia e 14 da América do Sul), com base no gene mitocondrial citocromo *c* oxidase subunidade I (COI) e oito marcadores microssatélites polimórficos, Ghabooli et al. (2013) investigaram a estrutura genética populacional em áreas invadidas e áreas de distribuição nativa. Os autores concluíram que as populações introduzidas na Ásia exibem maior diversidade do que na América do Sul, sugerindo maior esforço de introdução para as populações invasoras da Ásia. Além disso, verificaram que há uma estruturação geográfica pronunciada nas regiões invadidas e uma estruturação genética em escala fina em ambos os continentes, sugerindo múltiplas introduções de propágulos distintos ou forte seleção pósintrodução, assim como estocastismo demográfico. Também concluem que a maior diversidade genética na Ásia pode estar associada a maiores atividades de transporte de propágulos das regiões de origem e doadoras para áreas invadidas.

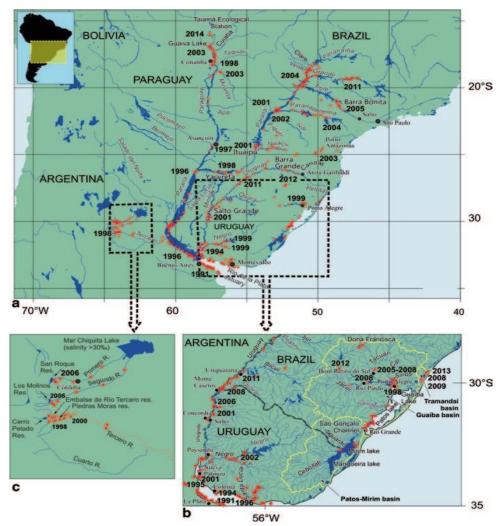


Figura 6. Cronologia da invasão e dispersão de *Limnoperna fortunei* na América do Sul, anteriormente ao registro no rio São Francisco. Fonte: Oliveira et al. (2015), autorizado pelo editor (Springer) e pelos autores.

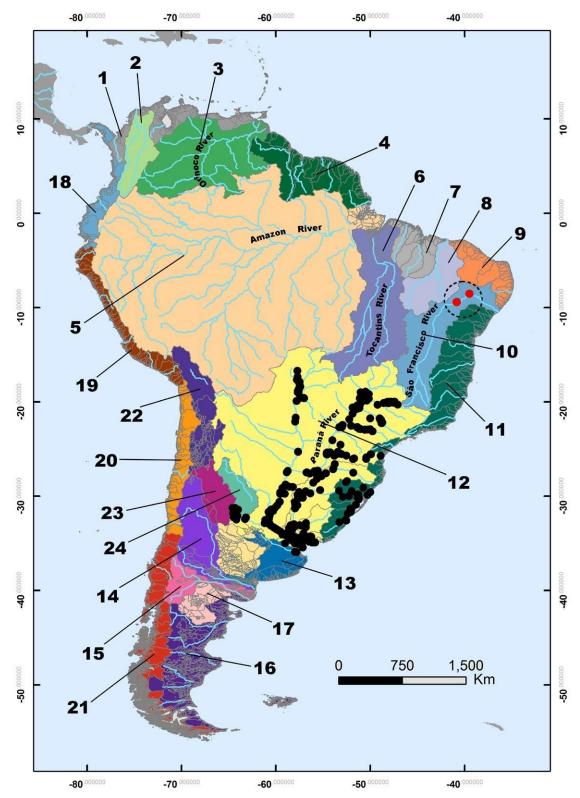


Figura 7. Distribuição *Limnoperna* fortunei na América do Sul, incluindo registros antigos (pontos negros) e atuais relacionados (pontos vermelhos dentro do círculo tracejado; CBEIH 2015, Oliveira et al., 2015). As bacias são indicadas no mapa pelos números: 1) Costa do Caribe, 2) Bacia do Magdelena, 3) Bacia do Orinoco, 4) Costa norte do Atlântico, 5) Bacia Amazônica, 6) Bacia do Tocantins, 7) Nordeste Atlântico Ocidental, 8) Bacia do Parnaíba, 9) Costa Atlântica do Atlântico Leste, 10) Bacia do São Francisco, 11) Costa Atlântica Leste, 12) Bacia do Prata (Bacia do Paraná), 13) Costa Atlântica do Sudeste, 14) Bacia do Colorado, 15) Bacia Negra, 16) Costa do Atlântico Sul, 17) Central Patagonia Highlands, 18) Costa do Pacífico - Colômbia / Equador, 19) Costa do Pacífico - Peru, 20) Costa do Pacífico - Norte do Chile, 21) Costa do Pacífico - Sul do Chile, 22) Região de La Puna, 23) Salinas Grandes Basin, 24) Mar Chiquita Basin, e 25) Pampas Region. Fonte: Barbosa et al. (2016), com permissão dos autores e editores.

2.2.2.1 RESERVATÓRIOS

Por meio de compilação bibliográfica e da base de dados do Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas - Cbeih (base.cbeih.org), até o momento foram encontrados registros do mexilhão-dourado em 50 reservatórios (Tabela 2, Figura 8), sendo sete distribuídos ao longo do trecho do alto rio Jacuí (RS), um no rio Canoas (SC), um no rio Pelotas (SC/RS), três no rio Uruguai (SC/RS), cinco no rio Iguaçu (PR), dois no rio Jordão (PR), um no Tibagi (PR), sete no Paranapanema (SP/PR), seis no Tietê (SP), quatro no Paraná (PR, SP/MS, MS/SP e SP), nove no Grande (sete em SP/MG e um em MG), dois no Paranaíba (MG), um no rio Claro (GO) e um no rio São Francisco (BA). A invasão é um processo dinâmico e contínuo, dependendo da sobrevivência da espécie invasora ao transporte (vetores) e do rompimento de barreiras ecológicas, sendo o estabelecimento de medidas de prevenção, controle ou erradicação extremamente relacionado a estes fatores (Darrigran et al., 2012). Provavelmente, muitas hidrelétricas se encontram em processo de colonização neste momento, no entanto, com ausência de registros ou com registros ainda não divulgados pelos seus gestores. A transparência e a comunicação rápida entre gestores, pesquisadores e todos os usuários d'água de um sistema hidrográfico, facilitaria a implementação de medidas assertivas de prevenção da introdução, dispersão, controle e monitoramento, com melhor retorno dos investimentos em menor espaço de tempo (Darrigran & Damborenea, 2009).

Figura 8. Usinas Hidrelétricas brasileiras com registros de ocorrência do mexilhão-dourado. As coordenadas listadas se referem ao eixo dos barramentos aproximadamente (de acordo dados apresentados na Tabela 2). Autor do mapa: Thiago Bazan e Daniel Pereira. Fonte: ver Tabela 2.

Tabela 2 – Usinas Hidrelétricas brasileiras com registros de ocorrência do mexilhão-dourado. As coordenadas de localização listadas se referem ao eixo dos barramentos

aproximadamente.

Usinas Hidrelétricas	Localização		UF	Rio	Bacia	Companhia	Fonte
	Latitude	Longitude				-	01: -:
Ernestina		-52,536922	RS	Jacuí	Lagoa dos Patos	CEEE	Oliveira et al., 2015
Itaúba	*	-53,235359	RS	Jacuí	Lagoa dos Patos	CEEE	Jornais Locais
Passo Real	*	-53,182810	RS	Jacuí	Lagoa dos Patos	CEEE	Jornais Locais
Leonel de Moura Brizola		-53,208440	RS	Jacuí	Lagoa dos Patos	CEEE	Jornais Locais
Capingui 1		-52,220115	RS	Jacuí	Lagoa dos Patos	CEEE	Oliveira et al., 2015
UHE 14 de JULHO	-29,064257	-51,674431	RS	Antas	Lagoa dos Patos	CERAN	base.cbeih.org
Dona Francisca	-29,449123	-53,285141	RS	Jacuí	Lagoa dos Patos	Consórcio Dona Francisca	Oliveira et al., 2015
Campos Novos	-27,601174	-51,316443	SC	Canoas	Rio Uruguai	ENERCAN	base.cbeih.org
Barra Grande	-27,776912	-51,187888	RS/SC	Pelotas	Rio Uruguai	BAESA	base.cbeih.org
Machadinho	-27,527287	-51,789773	RS/SC	Uruguai	Rio Uruguai	TRACTEBEL Energia	base.cbeih.org
Itá	-27,276223	-52,381653	RS/SC	Uruguai	Rio Uruguai	TRACTEBEL Energia	base.cbeih.org
Foz do Chapecó	-27,141182	-53,039210	RS/SC	Uruguai	Rio Uruguai	Foz do Chapecó Energia S.A.	base.cbeih.org
ov. Bento Munhoz da Rocha (Foz do Areia)	-26,082847	-51,649503	PR	Iguaçu	Rio Paraná	COPEL	base.cbeih.org
Gov. Ney Aminthas de Bar	-25,782849	-52,132833	PR	Iguaçu	Rio Paraná	COPEL	base.cbeih.org
Gov Joz Richa	-25,549522	-53,499491	PR	Iguaçu	Rio Paraná	COPEL	base.cbeih.org
Santa Clara	-25,647294	-51,953113	PR	Jordão	Rio Paraná	Elejor	base.cbeih.org
Fundo	-25,708127	-51,997557	PR	Jordão	Rio Paraná	Elejor	base.cbeih.org
Salto Osório	-25,532853	-53,032828	PR	Iguaçu	Rio Paraná	TRACTEBEL Energia	base.cbeih.org
Salto Santiago	-25,649519	-52,616164	PR	Iguaçu	Rio Paraná	TRACTEBEL Energia	base.cbeih.org
Gov. Jayme Canet Júnior (Maú)	-24,061738	-50,705908	PR	Tibagi	Rio Paraná	ELETROSUL/COPEL	base.cbeih.org
Capivara	-22,657478	-51,359296	PR/SP	Paranapanema	Rio Paraná	Duke Energy (CTG)	base.cbeih.org
Lucas Nogueira Garcez (Salto Grande)	-22,935632	-50,249248	PR/SP	Paranapanema	Rio Paraná	Duke Energy (CTG)	base.cbeih.org
Canoas I	-22,940911	-50,516468	PR/SP	Paranapanema	Rio Paraná	Duke Energy (CTG)	base.cbeih.org
Canoas II	-22,935632	-50,249248	PR/SP	Paranapanema	Rio Paraná	Duke Energy (CTG)	base.cbeih.org

Usinas Hidrelétricas	Locali		UF	Rio	Bacia	Companhia	Fonte
	Latitude	Longitude					
Taquaruçu (Escola Politécnica)	-22,541472	-51,999514	PR/SP	Paranapanema	Rio Paraná	Duke Energy (CTG)	base.cbeih.org
Chavantes	-23,128130	-49,730918	PR/SP	Paranapanema	Rio Paraná	Duke Energy (CTG)	base.cbeih.org
Rosana	-22,599531	-52,868951	PR/SP	Paranapanema	Rio Paraná	Duke Energy (CTG)	Oliveira et al., 2015
Barra Bonita	-22,518962	-48,533985	SP	Tietê	Rio Paraná	AES Tietê	base.cbeih.org
Bariri	-22,152853	-48,752041	SP	Tietê	Rio Paraná	AES Tietê	base.cbeih.org
Rui Barbosa (Nova Avanhandava)	-21,118418	-50,200643	SP	Tietê	Rio Paraná	AES Tietê	base.cbeih.org
Três Irmãos	-20,668173	-51,299506	SP	Tietê	Rio Paraná	CESP	cesp.com.br
Ibitinga	-21,758690	-48,990096	SP	Tietê	Rio Paraná	AES Tietê	base.cbeih.org
Promissão	-21,306808	-49,757681	SP	Tietê	Rio Paraná	AES Tietê	base.cbeih.org
Itaipu	-25,426470	-54,592539	PR	Paraná	Rio Paraná	Itaipu Binacional	base.cbeih.org
Engenheiro Sérgio Motta (Porto Primavera)	-22,477503	-52,955613	SP/MS	Paraná	Rio Paraná	CESP	base.cbeih.org
Engenheiro Souza Dias (Jupiá)	-20,775367	-51,626190	MS/SP	Paraná	Rio Paraná	CESP	base.cbeih.org
Ilha Solteira	-20,381757	-51,363137	SP	Paraná	Rio Paraná	CESP	base.cbeih.org
Volta Grande	-20,028418	-48,220384	SP/MG	Grande	Rio Paraná	CEMIG	base.cbeih.org
Furnas	-20,664243	-46,319843	MG	Grande	Rio Paraná	FURNAS	base.cbeih.org
Jaguara	-20,022582	-47,434002	SP/MG	Grande	Rio Paraná	CEMIG	base.cbeih.org
Marimbondo	20,300641	-49,196210	SP/MG	Grande	Rio Paraná	FURNAS	base.cbeih.org
Marechal Mascarenhas de Moraes (Peixoto)	-20,287302	-47,065671	SP/MG	Grande	Rio Paraná	FURNAS	base.cbeih.org
Porto Colômbia	-20,123696	-48,571492	SP/MG	Grande	Rio Paraná	FURNAS	base.cbeih.org
Água Vermelha	-19,850646	-50,345091	MG	Grande	Rio Paraná	AES Tietê	base.cbeih.org
Igarapava	-19,982861	-47,749555	SP/MG	Grande	Rio Paraná	Consórcio Igarapava	base.cbeih.org
Emborção	-18,451466	-47,985496	MG	Paranaíba	Rio Paraná	CEMIG	base.cbeih.org
São Simão	-19,017595	-50,498703	MG	Paranaíba	Rio Paraná	CEMIG	base.cbeih.org
Foz do Rio Claro	-19,117317	-50,645090	GO	Claro	Rio Paraná	Foz do Rio Claro Geração de Energia	fozrioclaro.com.br
Sobradinho	-9,430960	-40,827390	BA	São Francisco	Rio São Francisco	CHESF	base.cbeih.org

2.2.2.2 UNIDADES DE CONSERVAÇÃO

Por meio de compilação bibliográfica, de informações fornecidas pelo ICMBio, e da base de dados do Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas - Cbeih (base.cbeih.org), até o momento foram encontrados registros do mexilhão-dourado em 27 Unidades de Conservação (Tabela 3, Figura 9) situadas ao longo de rios, deltas e sistemas de lagoas costeiras, sendo nove situadas no Rio Grande do Sul, duas em Santa Catarina, seis no Paraná, quatro no Estado de São Paulo, três no Mato Grosso, duas no Mato Grosso do Sul e uma abrangendo áreas do Paraná, Mato Grosso do Sul e São Paulo.

Figura 9. Unidades de Conservação (UCs) Estaduais e Federais junto de cursos d'agua colonizados pelo mexilhão-dourado (de acordo dados apresentados na Tabela 3Tabela 2). Autor do mapa: Thiago Bazan e Daniel Pereira. Fonte: verTabela 3.

Tabela 3 - Unidades de Conservação (UCs) Estaduais e Federais junto de cursos d'aguas colonizados pelo mexilhão-dourado. A localização se refere a um ponto mais próximo dos cursos d'aguas colonizados.

Unidade	UF	Localização		Bacia	Fonte
Área de Proteção Ambiental Estadual Delta do Jacuí	RS	-29,955440	-51,254555	Lagoa dos Patos	SEMA/RS
Parque Estadual de Itapeva	RS	-29,354507	-49,757450	Rio Tramandaí	Oliveira et al., 2015
Parque Estadual de Itapuã	RS	-30,368333	-50,997778	Lagoa dos Patos	SEMA/RS
Parque Estadual do Camaquã	RS	-31,264041	-51,779358	Lagoa dos Patos	Capitolli et al. 2008
Parque Estadual do Espinilho	RS	-30,195167	-57,524629	Rio Uruguai	base.cbeih.org
Parque Estadual do Turvo	RS	-27,149482	-53,855444	Rio Uruguai	base.cbeih.org
Parque Estadual Quarta Colônia	RS	-29,455858	-53,267324	Lagoa dos Patos	base.cbeih.org
Reserva Biológica do Mato Grande	RS	-32,166651	-52,707098	Lagoa Mirim	SEMA/RS
Estação Ecológica do Taim	RS	-32,492054	-52,585905	Lagoa Mirim	ICMBio
Parque Estadual Fritz Plaumann	SC	-27,296577	-52,118910	Rio Uruguai	base.cbeih.org
Parque Estadual Rio Canoas	SC	-27,591238	-51,181823	Rio Canoas	base.cbeih.org
Estação Ecológica do Rio dos Touros	PR	-25,938504	-52,034655	Rio Iguaçu	base.cbeih.org
Parque Estadual Rio Guarani	PR	-25,456429	-53,128704	Rio Paraná	base.cbeih.org
Área de Proteção Ambiental de Guaraqueçaba	PR	-25,259180	-48,435134	Rios Costeiros	ICMBio
Estação Ecológica de Guaraqueçaba	PR	-25,309880	-48.317371	Rios Costeiros	ICMBio
Parque Nacional de Iguaçu	PR	-25,534463	-53,806854	Rio Iguaçu	ICMBio
Parque Nacional de Ilha Grande	PR	-23,700068	-53,987517	Rio Paraná	ICMBio
Parque Estadual do Aguapeí	SP	-21,203274	-51,520632	Rio Paraná	base.cbeih.org
Área de Proteção Ambiental Cananéia- Iguapé-Peruíbe	SP	-24,619884	-47,394114	Ribeira do Iguape	ICMBio
Parque Estadual do Morro do Diabo	SP	-22,588754	-52,359966	Rio Paranapanema.	base.cbeih.org
Parque Estadual do Rio do Peixe	SP	-21,601254	-51,736146	Rio Paraná	base.cbeih.org
Parque Estadual Guirá	MT	-17,321266	-57,854662	Rio Paraguai	base.cbeih.org
Estação Ecológica de Taiamã	MT	-16,864229	-57,508861	Rio Paraguai	ICMBio
Parque Nacional do Pantanal Matogrossense	MT	-17,682684	-57,421585	Rio Paraguai	ICMBio
Parque Estadual das Várzeas do Rio Ivinhema	MS	-22,921920	-53,654316	Rio Paraná	base.cbeih.org
Parque Estadual Pantanal do Rio Negro	MS	-19,634419	-56,742791	Rio Paraguai	base.cbeih.org
Área de Proteção Ambiental de Ilhas e Várzeas do Rio Paraná	PR/MS/ SP	-23,260541	-53,752233	Rio Paraná	ICMBio

2.3 VIAS DE INTRODUÇÃO

A introdução da espécie no continente sul-americano se deu via navegação intercontinental por meio da água de lastro de navios (Darrigran & Mansur, 2009). Dentro do continente, por sua vez, a dispersão ocorreu devido a uma ampla gama de vetores relacionados às atividades humanas (Oliveira et al., 2015). Já a introdução no Japão foi relacionada à aquacultura (Ito, 2015).

2.4 VETORES DE DISPERSÃO

De acordo com Carlton & Ruiz (2004), vetores são meios pelos quais uma espécie obtém acesso a um novo habitat, distinto daqueles existentes em sua área de distribuição original e/ou de sua distribuição atual. Inúmeros vetores associados às atividades humanas e vetores naturais foram relacionados à dispersão do mexilhão-dourado em obras importantes (Darrigran & Damborenea, 2009; Santos et al., 2012; Fernandes et al., 2012), mas pouco se conhece sobre a contribuição efetiva de cada um deles.

Um estudo pioneiro foi realizado por Belz (2009) para a predição e análise de risco de dispersão do mexilhão-dourado na bacia hidrográfica do Rio Iguaçu, no Estado do Paraná, com base no cálculo de probabilidades, perigos e riscos dos principais vetores desta bacia: o transporte fluvial, o transporte de areia, o transporte de barcos de pesca esportiva e o transporte de peixes vivos. Quanto ao transporte de areia oriunda do Rio Paraná (área contaminada), o autor verificou que 93,7% da areia foi destinada à construção civil, sem riscos relevantes, enquanto que os 6,3% restantes foram destinados à construção de praias artificiais em reservatórios de água-doce no interior do Paraná. De praias vistoriadas, quatro apresentavam vestígios de conchas íntegras provavelmente de indivíduos recentemente mortos. Quanto ao transporte de pesca desportiva, a análise de 34 barcos, por meio de coleta de 110 litros de água dos viveiros e 24,5 litros do fundo dos barcos, seguido de inspeção de cascos e âncoras, constatou: uma média de 4 larvas/barco nos viveiros, 1,5 larvas/barco na água no fundo, 6 mexilhões adultos/barco. Dentre os pescadores entrevistados, 50% reconheceram ser possivelmente responsáveis pela dispersão do mexilhão-dourado. Quanto ao transporte de peixes vivos, foram examinados os estômagos de Pterodoras granulosus (Valencienes, 1840) (Doradidae), Satanoperca papaterra (Heckel, 1840) (Cichlidae), Pomatotrygon motoro (Matterer, 1841) (Potamotrygonidae), Iheringichthys labrosus (Lutken, 1874) (Pimelodidae) e Megalancistrus aculeatus (Perugia, 1891) (Loricaridae). Após a remoção dos mexilhões do conteúdo, lavagem e acondicionamento em água sob aeração, constatou-se a presença de mexilhões adultos vivos no trato digestivo de P. granulosus, o qual apresentou dieta composta de até 100% desses bivalves. Amostras dos viveiros revelaram densidades entre 0 e 16 ind.m⁻³. Os resultados dos cálculos de probabilidades,

riscos e perigos de cada vetor de dispersão, demonstrou ser o transporte de peixes vivos o vetor de maior potencial de dispersão do mexilhão-dourado naquela bacia.

O risco de cada vetor de dispersão em uma bacia hidrográfica está relacionado com as atividades econômicas, com os usos da água, com os arranjos sociais, práticas e hábitos locais, os quais podem diferir em cada sistema hidrográfico, resultando em diferentes rotas ou corredores de invasão (Darrigran et al., 2012). Portanto, estudos como o realizado por Belz (2009), contemplando uma maior diversidade de vetores artificiais e naturais, deveriam ser realizados para avaliar riscos de dispersão nas bacias não invadidas em território brasileiro, visando dimensionar probabilidades, riscos e perigos de cada vetor para a expansão geográfica do mexilhão-dourado. Especialmente para avaliar o risco de invasão das sub-bacias que integram a grande região hidrográfica do Rio Amazonas, bem como as bacias do Rio Tocantins e Araguaia, as quais apresentam diferentes aspectos quanto aos usos da água, como: a navegabilidade, a pesca, aquacultura, geração de energia, agricultura, conectividade, vetores naturais, entre outros. O estudo de vetores é primordial para o estabelecimento de medidas preventivas de dispersão de espécies invasoras em bacias hidrográficas.

A Tabela 4 apresenta uma síntese dos vetores de dispersão, os quais devem ser considerados em ações preventivas da dispersão do mexilhão-dourado nas bacias hidrográficas sem registros da espécie. Uma análise de risco, com base em dados primários poderá dimensionar a relevância destes vetores.

Tabela 4 - Principais vetores responsáveis pela dispersão de propágulos do mexilhão-dourado nas diferentes fases de desenvolvimento do organismo invasor, os quais apresentam risco de introdução e dispersão do mexilhão-dourado nas bacias não contaminadas do Brasil, em especial a bacia do rio Amazonas e dos rios Tocantins-Araguaia. Fonte: Darrigran & Mansur (2009), Belz (2009)

Vetores de Dispersão	Propágulos	Risco Potencial Teórico	Ações de Prevenção
Vetores associados às atividades	s humanas		
Água de lastro de navios;	Larvas	Existe fluxo de grandes embarcações até Manaus.	Deslastramento em altomar conforme Norman 20, inclusive para navios de cabotagem, oriundos de portos de água-doce que devem deslastrar a troca no ma antes de deslastrar em outro porto de águadoce (Fernandes et al., 2009)
Água de reservatórios de barcos,	Larvas	Belz (2009) verificou risco elevado de contaminação por	Não transportar águas de ambientes contaminados para ambientes
Água de viveiros de barcos;	Larvas	meio deste vetor na Bacia do Rio Iguaçu.	
Água acumulado no fundo de barcos;	Larvas		descontaminados. Realizar a desinfecção das embarcações.
			Realizar inspeções nas embarcações
Água de transporte de alevinos e peixes (iscas);	Larvas	SUFRAMA (2003) apresentou um estudo de viabilidade econômica que demonstra potencialidades para o desenvolvimento de piscicultura nos Estados do Amazonas, Roraima, Acre e Rondônia. O Crescimento de piscicultura em tanques redes tem crescido no Amazonas,	Não utilizar águas contaminadas para transportar alevinos. Monitorar o cultivo de alevinos. Realizar inspeções do transporte de alevinos via terrestre e aquática
		oferecendo riscos de contaminação dos mananciais mediante a liberação de alevinos, cultivados em águas contaminadas.	
Instrumentos de amostragem científica;	Larvas	Garrafas de Niskin, Van Dorn, redes de plâncton e outros aparatos para coletar água podem contaminar novas áreas.	Limpar e desinfetar os instrumentos de coleta antes de cada amostragem.
	Recrutas e Adultos	Redes para amostragem de ictiofauna; redes de coleta de	

		macroinvertebrados, dragas, peneiras e potes.	
Cascos de embarcações	Recrutas e Adultos	Vetores amplamente documentados para outras bacias (Darrigran e Mansur, 2009); Santos et al. (2012), conferem riscos em demais bacias não infestadas.	Realizar revestimento antincrutante e limpeza periódica dos cascos das embarcações para a remoção mecânica de mexilhões e posterior desinfecção.
Motonáutica	Adultos e larvas	Estes equipamentos são geralmente transportados via terrestre de uma bacia para outra;	Realizar inspeção destes equipamentos quando transportados via terrestre de uma bacia para outra.
Plataformas flutuantes e boias	Adultos e Larvas	Vetores amplamente documentados para outras bacias (Darrigran e Mansur, 2009); Santos et al. (2012), conferem riscos em demais bacias não infestadas.	Evitar o deslocamento de boias e plataformas flutuantes pelo curso d'água. Caso seja necessário, retirar o equipamento do curso da água, para remoção mecânica, desinfecção esvaziamento de compartimentos que contenham água acumulada. Realizar inspeção destes equipamentos quando transportados
Tanques rede	Adultos	Tanques redes contaminados lançados em áreas não contaminadas contribuirão para a dispersão da invasora. Unidades experimentais foram instaladas pelo Instituto de Desenvolvimento Agropecuário e Florestal Sustentável do Amazonas (IDAM), com o objetivo de intensificar esta atividade na Bacia.	via terrestre de uma bacia para outra. Realizar a limpeza periódica depois da despesca, via remoção mecânica, lavagem de alta pressão e exposição ao ar. Os procedimentos devem ser feitos fora da água para que não ocorram novas contaminações e para que os mexilhões mortos não causem depleção de oxigênio e aumento de matéria

			orgânica (Oliveira et al., 2015).
			Realizar inspeção destes equipamentos quando transportados via terrestre de uma bacia para outra.
Redes e demais apetrechos de pesca;	Adultos e larvas	A pesca é uma atividade econômica bastante presente nas bacias do Amazonas e Tocantins-Araguaia	Expor os apetrechos ao ar, sob sol escaldante e desinfecção.
Transposição de bacias;	Adultos e larvas	A implementação de projeto de transposição Rio Tocantins-Rio São Francisco (Molion, 2003; Alves, 2005) consistiria no estabelecimento de nova rota de invasão, na qual vários vetores de dispersão citados nesta tabela contribuirão para expansão geográfica da espécie até a bacia do rio Amazonas.	Não realizar a transposição de bacias entre cursos d'água contaminados e não contaminadas.
Transporte de areias extraídas de sistemas fluviais contaminados para a construção de praias artificiais em áreas não contaminadas.	Adultos	Praias artificiais são recomendadas para o manejo de quelônios na Amazônia (IBAMA, 2016).	Não utilizar areia de áreas contaminadas. Realizar inspeção do material transportado via terrestre e aquática.
Vetores Naturais			
Macrófitas aquáticas;	Adultos	Macrófitas flutuantes contaminadas podem ser transportadas junto de embarcações ou contra a corrente por meio dos ventos.	Não transportar macrófitas aquáticas de áreas contaminadas para áreas não contaminadas
Peixes malacófagos migradores;	Adultos	Peixes malacófagos são vetores potenciais de dispersão (Fernandes et al., 2012).	Não há como impedir a utilização do mexilhão- dourado como recurso alimentar pela fauna e tão pouco sua dispersão
Cascos de quelônios;	Adultos	Cardoso (2014) avaliou o potencial de quelônios de ambientes aquáticos do sul do Brasil e constatou que algumas espécies são vetores potenciais de dispersão do mexilhão-dourado	por vetores naturais, mas monitorar a contribuição destes vetores poderá mensurar a importância destes vetores. Espécies do gênero <i>Podocnemis</i> com ampla distribuição na bacia do Rio Amazonas e Tocantins,

				bem como nas matas inundáveis, são vetores potenciais que carecem de estudos.
Conectividade entre bacias por meio de inundação.	Adultos larvas	e	As sub-bacias amazônicas são altamente conectadas durante os pulsos de cheia (Junk et al, 2011).	A dispersão passiva pelo elevado grau de conectividade deste sistema hidrográfico será inevitável.

2.5 CENÁRIOS POTENCIAIS FUTUROS DE INVASÃO E DISPERSÃO

Oliveira et al. (2010b) realizou previsões de distribuição potencial de *L. fortunei* em sistemas hidrográficos brasileiros, com base em fatores limitantes relacionados à calcificação da concha que consiste em uma importante proteção ao molusco, entre outras variáveis limnológicas e climáticas de nicho ecológico utilizando algoritmos GARP e Maxent. O estudo concluiu que devido à maior tolerância do mexilhão-dourado aos fatores que limitam a distribuição de outros bivalves, bem como sua grande capacidade de calcificação de conchas em água pobres em cálcio, o mexilhão-dourado poderia se tornar amplamente distribuído em todo o Brasil. Ambos os modelos GARP e Maxent apontam para a probabilidade alta de ocorrência potencial de *L. fortunei* no rio Solimões, Tapajós, Xingu, Madeira, Amazonas, Tocantins, Araguaia, São Francisco, bem como demais rios costeiros, entre outros (Figura 10, Figura 11 e Figura 12).

O mesmo tipo de predição, utilizando as variáveis citadas acima, e valores de temperatura da água, oxigênio dissolvido, pH e sólidos totais suspensos, foi realizado por Oliveira et al. (2010c), para avaliar a distribuição potencial do mexilhão-dourado no Alto Rio Paraguai. O estudo concluiu que os rios Cuiabá e Miranda, exibem alto risco de invasão, enquanto a parte média da bacia, onde há baixa concentração do cálcio e dos carbonatos minerais, o risco é menor. Também utilizando algoritmo MAXENT, Campos et al. (2016) realizou predições de distribuição do mexilhão-dourado no Alto Rio Paraná, com base em variáveis limnológicos e na força de cisalhamento. Diferenças espaciais significativas demonstraram a importância de aspectos hidrodinâmicos, na distribuição espacial de *L. fortunei*.

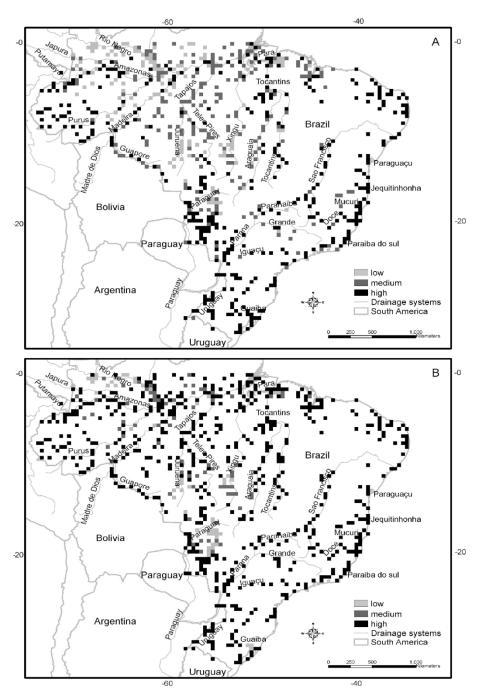


Figura 10. Distribuição potencial de *L. fortunei* nos sistemas do rio brasileiro com base em limiares mais baixos de concentração de cálcio (A) e SI_{calcita} (B). Consideramos o baixo risco (cinza pálido) de ocorrência de *L. fortunei* em rios onde a concentração média de cálcio estava entre 0,0 e 1,0 mg 1⁻¹ e SI_{calcita} foi <-4,0, risco médio (cinza escuro) entre concentrações de cálcio de 1,0 e 3,0 mg 1⁻¹ e SIcalcite entre -4,0 e -3,0, e alto risco (preta) em que a concentração de cálcio foi> 3,0 mg 1⁻¹ e a calcita SI foi> -3,0. Fonte: Oliveira et al. (2010), com permissão dos autores.

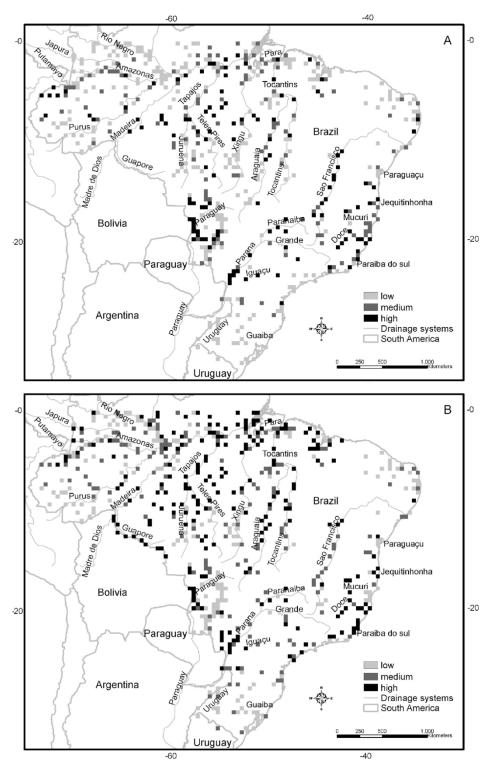


Figura 11. Distribuição potencial prevista de *L. fortunei* nos sistemas hidrográficos brasileiros com base no modelo GARP calibrado para distribuições observadas no Pantanal: (A) variável: SI_{calcite}, AUC = 0,82, Precisão = 94%, erro de omissão = 5,8% (B) variáveis: Concentração de cálcio, condutância, pH, temperatura da água, oxigênio dissolvido, AUC = 0,92, precisão = 97%, erro de omissão = 2,9%. Consideramos a probabilidade de estabelecimento de *L. fortunei* como baixa (cinza pálido) quando menos de 5% dos modelos predisseram a ocorrência, médio (cinza escuro) quando 5 a 50% dos modelos previram a ocorrência e a probabilidade alta (preta) quando Mais de 50% dos modelos previram a ocorrência. Fonte: Oliveira et al. (2010), com permissão dos autores.

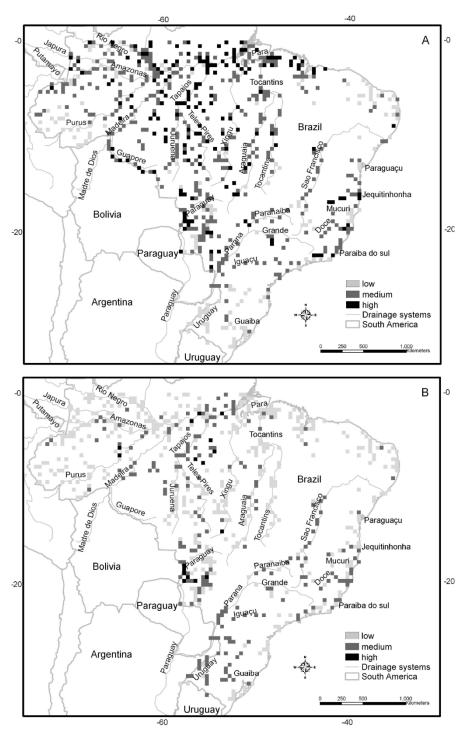


Figura 12. Distribuição geográfica potencial prevista da *L. fortunei* nos sistemas hidrográficos brasileiros com base no modelo Maxent, calibrado com base em registros no Pantanal: (A) variável: SI_{calcite}, AUC = 0,82, valor limiar = 3,0 (B) variáveis: concentração de cálcio, Condutância, pH, temperatura da água e oxigênio dissolvido, AUC = 0,96, valor limiar = 5,5. Maxent produz uma previsão contínua com valores variando de 0 a 100, em regiões com melhores condições previstas: cinza claro (entre 0,0 e valor de limiar, baixo risco); cinza escuro (entre valor limiar e 50, risco médio); preto (50-100, alto risco). Fonte: Oliveira et al. (2010), com permissão dos autores.

Campos et al. (2014) realizou uma modelagem preditiva da distribuição de mexilhão-dourado utilizando os algoritmos Distância Mahalanobis, Domínio, GARP e MAXENT, com base em dados de ocorrências nativas e invadidas da Ásia (71 pontos) e da América do Sul (248 pontos) compilados da literatura e de camadas ambientais do BIOCLIM, relacionadas à temperatura do ar e à precipitação. Os cenários obtidos por meio desta modelagem mostraram probabilidade alta de ocorrência potencial de *L. fortunei* em ambientes aquáticos da América Central, América do Norte, Europa, África e Oceania, bem como ampliação das áreas de ocorrência na Ásia e América do Sul, especialmente, na Argentina, Bolívia, Colômbia, Chile, Peru, Venezuela, e no Brasil, nas bacias do Rio Amazonas, Rio Tocantins, Rio Araguaia e Rio São Francisco (Figura 13), no qual foi recentemente confirmado o primeiro registro por Barbosa et al. (2016).

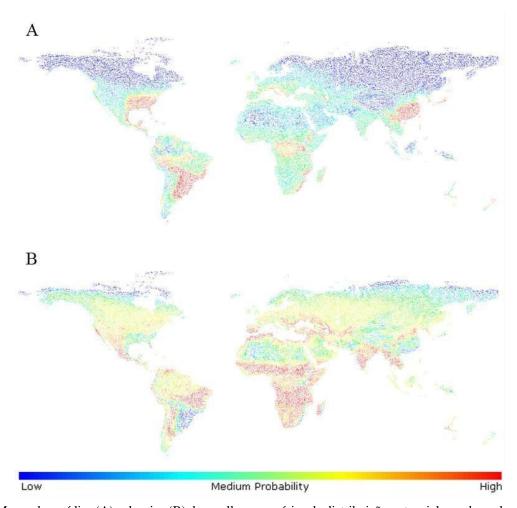


Figura 13. Mapas des médias (A) e desvios (B) dos melhores cenários de distribuição potencial gerados pelos quatro tipos de algoritmos (Mahalanobis Distance, Domain, Garp e Maxent). Fonte: Campos et al. (2014), com permissão dos autores.

3 IMPACTOS

Impactos ambientais e econômicos da invasão de *L. fortunei* são amplamente documentados, afetando os usos múltiplos dos corpos hídricos e da água e a biodiversidade.

3.1 IMPACTOS AMBIENTAIS

Impactos ambientais das populações invasoras do mexilhão-dourado foram documentados na literatura sobre diferentes componentes da biota aquática, bem como aos habitats de água-doce.

3.1.1 HABITATS AQUÁTICOS

A coluna d'água, além de ser ocupada por grandes densidades de larvas, sofre alterações quanto à transparência pela intensa atividade de filtração dos adultos, enquanto que os substratos duros, outrora ocupados por organismos epifaunais, são totalmente cobertos por aglomerados do mexilhão-dourado (recrutas e adultos), o qual aumenta a complexidade estrutural e qualidade destes habitats, devido a grande liberação de material orgânico por meio das pseudofezes (Uhde et al., 2012, Boltovskoy et al., 2015b; Karatayev et al., 2015). O apodrecimento de raízes de macrófitas emergentes pode reduzir a biomassa da vegetação marginal, ocasionando perda de habitat para forrageamento, reprodução e abrigo de algumas espécies de peixes e outros organismos (Mansur et al., 2003).

3.1.2 MACRÓFITAS AQUÁTICAS E PERÍFITON

De acordo com a revisão de Karatayev et al. (2015) o mexilhão-dourado, *L. fortunei* afeta indiretamente a comunidade de macrófitas e de perifíton, acarretando no incremento de biomassa. Estes efeitos se devem às alterações na qualidade da água, especialmente quanto à disponibilização de nutrientes por meio da liberação de fezes e pseudofezes (Boltovskoy et al., 2015b).

Durante os primeiros anos de invasão no Lago Guaíba (fase de pânico), no município de Porto Alegre, Rio Grande do Sul, foi possível verificar outro tipo de impacto sobre a comunidade de macrófitas, sobretudo as formas emergentes. Os juncais, formação vegetal típica do junco, sofreram redução em termos de cobertura vegetal. No entanto, a biomassa da macrófita não foi monitorada. *Mussel beds* do mexilhão-dourado cobriram os rizomas do junco (*Scirpus californicus*; Figura 14), incrustando sobre a base da planta, com acúmulo de pseudofezes, impedindo a circulação de oxigênio e acarretando no apodrecimento dos rizomas (Mansur et al., 2003). Neste mesmo período vários pescadores relataram a diminuição de recursos pesqueiros em função da redução de habitat para a reprodução de importantes espécies de peixes de interesse comercial. O habitat da maioria destes peixes consiste nos juncais junto à margem do Lago Guaíba. Em outro tipo de vegetação, a palhoça

(Figura 16) foi verificada o mesmo efeito do crescimento populacional do mexilhão-dourado, com consequências sobre a cobertura vegetal e possivelmente biomassa, alterando a paisagem litorânea do Lago Guaíba (Mansur et al., 2012). Outras macrófitas também são afetadas pela incrustação do mexilhão-dourado, como *Eichhornia crassipes* e *E. azurea* (Correa, 2015), verificando-se incrustações nos seus talos.

Figura 14. Perda de cobertura vegetal do junco devido à incrustação do mexilhão-dourado nas margens do Lago Guaíba. Foto: M.C.D. Mansur, autorizada pela autora.

Figura 15. Mexilhão-dourado incrustado em rizomas de sarandi e de palhoça (*Cephalanthus glabratus*) nas margens do Lago Guaíba, formando colchões contínuos sobre o substrato arenosos denominados "*mussel bed*". Foto: M.C.D. Mansur, autorizada pela autora.

3.1.3 ORGANISMOS PLANCTÔNICOS

De acordo com Karatayev et al. (2015), o mexilhão-dourado, assim como o mexilhão-zebra e mexilhão-guaga afeta a comunidade fitoplanctônica e zooplanctônica, acarretando em decréscimo de densidades e biomassa, mudanças na composição e na produtividade. O impacto na estrutura da comunidade de fitoplâncton tende a ser grave, considerando que a presença de zooplâncton não tem efeito sobre o pastejo da maioria dos grupos de fitoplâncton pelo mexilhão-dourado, o qual se alimenta tanto do zooplâncton quanto do fitoplâncton ao mesmo tempo (Frau et al., 2016).

Molina et al. (2015) associaram a pastagem seletiva à diminuição das densidades de rotíferos em vários corpos d'água do médio rio Paraná na Argentina, após a invasão de *L. fortunei*. Além disso, segundo os autores, as densidades de larvas do mexilhão-dourado normalmente excedem a soma de densidades de rotíferos e crustáceos zooplanctônicos durante 8-9 meses do ano, quando a invasora se torna dominante no zooplâncton. Também ressaltam que as larvas estariam competindo com espécies zooplanctônicas por recursos alimentares.

De acordo com Boltovskoy et al. (2015b), estudos sobre o consumo de cianobactérias tóxicas pelo mexilhão-dourado produzem resultados conflitantes. No entanto, os autores afirmaram que grandes populações do mexilhão-dourado aumentam significativamente as florescências da *Microcystis* spp. coloniais, por meio da alteração na disponibilidade de nutrientes, filtração seletiva quanto ao tamanho, promoção da formação de colônias e pastoreio reduzido de células tóxicas. Por outro lado, florações tóxicas reprimem a reprodução do mexilhão, provavelmente matando as larvas.

Como foi relatado por Paolucci et al. (2010) e Paolucci & Thuesen (2015), larvas planctônicas de peixes são afetadas pela abundância de véligers do mexilhão-dourado, as quais passaram a constituir um ítem predominante em sua dieta, contribuindo significativamente para o seu crescimento, sobretudo de Characiformes e Siluriformes.

3.1.4 FAUNA BENTÔNICA

Segundo a revisão de Karatayev et al. (2015), *L. fortunei* afeta a comunidade bentônica marginal, acarretando no incremento de densidade e diversidade de organismos, da mesma forma que foi documentado para o mexilhão-zebra e o mexilhão-guaga por diversos autores. Ambos *L. fortunei* e *Dreissena polymorpha* não apresentam efeitos sobre o zoobentos profundal, pois são pouco abundantes nestes habitats ou até mesmo ausentes.

Sylvester & Sardina (2015) compilaram registros de diversos autores sobre efeitos do mexilhão-dourado sobre a abundância, biomassa e riqueza de organismos zoobentônicos, os quais são relacionados a seguir: aumento da abundância de anelídeos (Polychaeta), e de larvas de insetos das ordens Collembola, Coleoptera, Odonata (Coenagrionidae), Diptera (Ceratopogonidae, Psychodidae, Tabanidae, Tipulidae); aumento da abundância e biomassa de Hydrozoa, Turbellaria, Tardigrada, de moluscos Gastropoda (Cochiliopidae), microcrustáceos (Cladocera e Copepoda), ácaros aquáticos (Arachnida), e larvas de insetos das ordens Diptera (Tanypodinae), Trichoptera e Ephemeroptera; aumento da abundância, biomassa e riqueza de anelídeos (Hirudinea e Oligochaeta), e microcrustáceos (Amphipoda, Tanaidacea e Isopoda). Os autores também listaram os efeitos sobre a redução de abundância e biomassa de moluscos Gastropoda (Planorbidae e Chylinidae) e quanto à abundância e riqueza de moluscos bivalves nativos de água-doce (Anodontites, Diplodon e Corbicula). No entanto, os autores não informaram em qual fase do processo de invasão foram verificados os efeitos sobre os organismos bentônicos. Provavelmente, em diferentes fases de crescimento populacional durante o processo de invasão, as populações do mexilhão-dourado geram efeitos divergentes quanto à estrutura e composição da fauna bentônica. É possível que na fase de pânico, quando o invasor atinge densidades extremas e se expande com rapidez, os efeitos sejam distintos daqueles observados quando a população invasora atinge equilíbrio oscilatório.

Incrustações sobre conchas de moluscos e bivalves têm afetado a estrutura e composição da taxocenose de bivalves de água-doce, sendo uma das ameaças à conservação de algumas espécies. Por exemplo, no Rio Grande do Sul, bivalves como *Leila blainvilliana*, *Diplodon deceptus*, *Diplodon hildae*, *Diplodon koseritzi* e o gastrópode *Pomacea canaliculata* foram registrados com indivíduos de mexilhão-dourado incrustados em suas conchas (Mansur et al., 1999, 2003; Santos et al., 2012; Figura 4). Gastrópodes epifaunais como espécies dos gêneros *Gundlachia* spp. (Ancylidae), *Potamolithus* spp., *Chilina* spp. também sofreram com a redução de habitat no Lago Guaíba, Rio Grande do Sul (Mansur et al., 2008), e no Balneário Bagliardi, na Argentina (Darrigran & Damborenea, 2009). Na Bacia do Baixo Rio Jacuí, Kapusta & Freitas verificaram maior riqueza de organismos bentônicos associados aos macroaglomerados do mexilhão-dourado do que em sedimento de fundo arenoso.

3.1.5 ICTIOFAUNA

Segundo a revisão de Karatayev et al. (2015) sobre os efeitos paralelos e contrastantes entre Dreissenidae invasores e o mexilhão-dourado, *L. fortunei* afeta a ictiofauna devido à maior disponibilidade de recursos, tanto para as larvas de peixes como para os peixes adultos, como foi confirmado por uma série de estudos. Como foi relatado no item relações tróficas, muitos peixes mudaram seus hábitos alimentares atuando em outras guildas tróficas, resultando em ganho energético a estas espécies predadoras do mexilhão-dourado. Efeitos deletérios podem ser citados quanto às espécies de peixes, que ao se alimentarem de mexilhões sem aparelho bucal adaptado para triturar as conchas, sofreram ferimentos junto ao ânus devido à passagem das conchas, o que os tornou susceptíveis aos parasitas.

3.1.6 QUALIDADE DA ÁGUA

Boltovskoy et al. (2015b) revelou por meio de experimentos laboratoriais e de uma série de dados de campo de longo prazo, que populações do mexilhão-dourado diminuem as concentrações de matéria orgânica particulada na coluna d´água e elevam os teores de amônia, nitrato e fosfato, acarretando no aumento da relação Fósforo/Nitrogênio. Também causam o aumento da transparência da água, a diminuição do séston, do fitoplâncton e da produtividade primária. De acordo com Karatayev et al. (2015), o mexilhão-dourado afeta o ciclo de nutrientes no ambiente aquático clarificando a coluna d´água.

3.1.7 CADEIA TRÓFICA

De acordo com Darrigran & Damborenea (2011), *L. fortunei* é considerada uma espécie engenheira, devido às seguintes alterações estruturais que pode causar no ecossistema em função de

sua elevada capacidade de filtração: clarificar o corpo d'água, acarretando no aumento da penetração da luz e crescimento de macrófitas aquáticas submersas e alterações na comunidade planctônica; intensificar a ciclagem de nutrientes produzindo grandes quantidades de material orgânico liberado por fezes e pseudofezes, liberando-os para a coluna d'água, sendo posteriormente sedimentado ao fundo do corpo hídrico, ofertando assim habitat e recurso alimentar para organismos bentônicos escavadores (infauna). Também citam as alterações estruturais em função dos aglomerados de conchas, devido a maior disponibilidade de substrato duro e aumento da complexidade de substrato, aumentando a fauna móvel e diminuindo a epifauna endêmica; diminuição do fluxo da água devido ao acúmulo de conchas. Relacionado ainda à produção de aglomerados, os autores relacionam impactos potenciais como o aumento dos peixes onívoros, competição com bivalves nativos e degradação de raízes de junco (Juncaceae).

Os efeitos sobre a complexidade da cadeia trófica são ainda muito pouco conhecidos, sendo esperados efeitos distintos em ambiente lênticos e lóticos em decorrência do menor e maior tempo de residência da coluna d'água e dos materiais em suspensão, bem como de aspectos da hidrodinâmica, como direção das correntes e deslocamentos verticais da massa d'água. No entanto, pode-se ressaltar com base nos estudos citados que o pastejo intensivo sobre as comunidades planctônicas, diminui este recurso alimentar para espécies de peixes planctófagos e larvas de peixes, em contrapartida, as larvas do mexilhão-dourado passam a constituir um importante recurso energético para consumidores de plâncton. Os mexilhões adultos liberam uma grande quantidade fezes e pseudofezes, aumentando o teor de amônia, nitrato e fosfato, disponibilizando nutrientes para os produtores primários, como macrófitas aquáticas, perifíton e fitoplâncton. Apesar de mudanças consideráveis na composição de organismos fitoplanctônicos, zooplanctônicos e bentônicos, muitos *taxa* sofrem aumento da abundância e biomassa, como também foi documentado para peixes. No entanto, não são claros os danos ao funcionamento dos ecossistemas invadidos pelo bivalve, e se há uma compensação entre perdas e ganhos, quando distintos *taxa* das comunidades aquáticas se beneficiam da invasão, atuando em sua guilda trófica original ou quando passam a integrar uma guilda distinta.

Segundo Cataldo (2015), há uma carência de dados de larga escala sobre os efeitos do consumo de mexilhão-dourado por peixes, mas esses são provavelmente muito significativos, pois os impactos não se restringem aos peixes malacófagos, mas também aos ictiofágicos que se alimentam destes, bem como aos peixes detritívoros que se alimentam de sedimento enriquecido pelas fezes e pseudofezes do mexilhão.

A síntese de efeitos de populações do mexilhão-zebra (*Dreissena* spp.) sobre a cadeia trófica (excluindo a ictiofauna), os quais também foram observados quanto ao mexilhão-dourado, realizada por Boltovskoy et al. (2015b), é brevemente descrita a seguir. No fundo do corpo hídrico, o bivalve

causa mudanças estruturais nos habitats bentônicos por meio da formação de aglomerados, os quais incrementam recursos alimentares e abrigo para a fauna de invertebrados bentônicos, aumentando a diversidade e abundância destes organismos. Ainda no compartimento de fundo, há a elevada produção de fezes e pseudofezes ricas em material orgânico. Para o mexilhão-zebra, o autor relatou a depleção de oxigênio junto ao fundo em função da decomposição de fezes e pseudofezes, o que pode diminuir a abundância de macroinvertebrados bentônicos, fato ainda não comprovado para o mexilhão-dourado. No entanto, cabe ressaltar o apodrecimento das raízes do junco junto ao sedimento de fundo, onde foi observado o acúmulo de material orgânico liberado por mussel beds do mexilhãodourado relatado por Mansur et al. (2003). Na coluna d'água, Boltovskoy et al. (2015b) relataram efeitos de populações do mexilhão-dourado sobre a ciclagem de nutrientes, sobretudo sobre o aumento da relação Fósforo/Nitrogênio, o que pode resultar na formação e crescimento de florações de cianobactérias coloniais (Microcystis spp.), que consequentemente causam a mortalidade das larvas do próprio invasor, de peixes, pássaros e a degradação da qualidade da água. Além disso, relata que o pastejo do material particulado e do fitoplâncton, aumenta a transparência da água, o que propicia o crescimento de macrófitas submersas e de perifíton. O autor ainda ressalta que podem ocorrer efeitos conflitantes para as comunidades de fitoplâncton, zooplâncton e bentos, mas ainda carentes de comprovação.

3.2 IMPACTOS ECONÔMICOS

Os impactos de ordem econômica afetam, sobretudo o setor elétrico, por meio da danificação de equipamentos e redução de eficiência da geração. Entre outros setores afetados podemos citar a pesca, a navegação, a piscicultura e a captação e tratamento de água.

3.2.1 Geração De Energia E Reservatórios

A presença do mexilhão-dourado resulta em danos estruturais aos equipamentos de resfriamento, grades, filtros (Figura 5), bombas, tubulações, bastidores, grelhas, telas, tanques de armazenamento, poços de bomba, túneis de entrada de água, instrumentação de monitoramento submersa, medidores de nível e paredões de concreto (Santos et al., 2012; Darrigran & Damborenea, 1999, Boltovskoy et al., 2015c). O intervalo entre as paralisações para a manutenção das turbinas de Itaipu foi reduzido após a invasão do mexilhão-dourado, gerando custos diários de US\$ 1 milhão (Collyer, 2007). Uma usina hidrelétrica de 120 MW afetada pelo mexilhão-dourado, com três unidades geradoras, pode ter custos diários de R\$ 40.000,00 devido à parada de máquinas, sem contabilizar os custos de manutenção dos equipamentos e remoção das incrustações (Netto, 2011).

3.2.2 CAPTAÇÃO, TRATAMENTO E DISTRIBUIÇÃO DE ÁGUA

A captação de água enfrenta grandes problemas com o entupimento de válvulas, bombas e grades (Figura 5), diminuindo o fluxo de entrada. A distribuição de água para as estações de tratamento também fica prejudicada devido ao entupimento das tubulações. O organismo invasor ainda pode entrar na estação de tratamento (Figura 16), onde ao morrer em decorrência do processo de tratamento, gera resíduo orgânico que deve ser removido (Mansur et al., 2003).

Figura 16. Estação da Corsan no Rio Grande do Sul mostrando a colonização de tanques pelo mexilhão-dourado e o resíduo removido. Foto: M.C.D. Mansur.

3.2.3 AQUICULTURA E PESCA

A produção aquícola em tanques redes é afetada pelo molusco, o qual cresce nas redes e demais superfícies metálicas do tanque (Figura 17), acarretando a deterioração do material, da qualidade da água, diminuição do fluxo dentro dos tanques, aumento do peso dos tanques, queda na produção, mortandade de peixes e diminuição da vida útil de todo o aparato (Oliveira et al., 2014).

Figura 17. Incrustação do mexilhão-dourado em tanques redes para o cultivo de peixes no Vale do Paranapanema, em São Paulo: A) mexilhão-dourado aderido à tela do tanque-rede, neste caso com predominância de indivíduos maiores que 5mm; B) aos flutuadores do tanque-rede; depósitos das conchas do mexilhão na margem do reservatório, próxima à criação de peixes (Fotos: Márcia D. Oliveira); conchas de mexilhão-dourado acumuladas no local de limpeza dos tanques-rede (Foto: Luiz Ayroza). Fonte: Oliveira et al. (2014).

3.2.4 NAVEGAÇÃO E HIDROVIAS

Danos estruturais também são vistos nas eclusas, tanto em superfícies metálicas quanto no concreto. Além disso, os barcos constituem um importante vetor de dispersão nestas hidrovias (Figura 18). A transposição de bacias aumenta a conectividade entre corpos hídricos invadidos e não invadidos, aumentando o risco de dispersão via transporte aquaviário, nos quais o bivalve invasor pode ser transportado tanto fixo ao casco de embarcações como em tanques de armazenamento de água (Boltovskoy et al., 2015c).

Figura 18. Eclusas na bacia do Rio Jacuí, Rio Grande do Sul apresentando substratos naturais e artificiais contaminados pelo mexilhão-dourado, assim como os cascos de embarcações. Fotos: M.C.D. Mansur, autorizada pelo autor.

3.2.5 PESCA

Segundo Moraes (2012), nas lagoas costeiras do litoral norte do Rio Grande do Sul, na bacia do Rio Tramandaí, pescadores relataram em entrevistas que o mexilhão-dourado causou à diminuição do junco (Juncaceae), o qual constitui um berçário para as espécies de peixes locais em declínio populacional, ao se fixar nas raízes da macrófita. Além disso, relataram que os mexilhões se decompõem quando as lagoas baixam o nível, liberando mau cheiro.

3.2.6 IRRIGAÇÃO

Dentre os impactos potenciais do mexilhão-dourado, a irrigação é citada pela maioria dos autores (Santos et al., 2012; Darrigran & Damborenea, 1999). No entanto, não são conhecidos estudos de caso que registrem este impacto e dimensionem esta magnitude. Em inspeção a sistemas de captação de água no Rio Jacuí, no Rio Grande do Sul foram detectados exemplares de mexilhão-dourado, em canais de irrigação e drenagem, na localidade de Passo Raso, em Triunfo (Pereira, dados inéditos). No entanto, não foram verificados danos expressivos à atividade de irrigação. A abundância do mexilhão-dourado nestes canais foi baixa, sendo encontrados poucos indivíduos fixos em alguns troncos de madeira, situados às margens dos canais. Boltovskoy et al (2015c), relatou este problema apenas para o Japão e China.

3.2.7 TURISMO

O acúmulo de conchas em praias de água doce (Figura 4I) dificulta a circulação de banhistas, podendo resultar em acidentes como cortes nos pés durante o pisoteio de conchas de animais mortos, dentro e fora d'água (Santos et al., 2012). Essa situação pode afetar o turismo em praias onde o crescimento populacional do molusco é expressivo. Geralmente esta situação ocorre após o rebaixamento brusco das águas em meses de estiagem e vazante, quando os bivalves ficam expostos ao sol por longo período nas margens, acarretando a mortalidade de indivíduos aglomerados que se acumulam sobre o sedimento.

4 Prevenção

Em 2004, A Organização Marítima Internacional (IMO) estabeleceu diretrizes para prevenir bioinvasões por meio da navegação oceânica. Uma das diretrizes consiste na troca oceânica da água de lastro. A água captada em regiões costeiras é substituída por água oceânica, com eficiência volumétrica de 95%, inviabilizando a sobrevivência de organismos com potencial invasor, devido às alterações dos parâmetros de qualidade de água. A troca deve ser realizada em distância superior 200 milhas náuticas da linha de costa do porto de destino, em locais com profundidade igual ou maior a 200 m. Outra diretriz consiste na elaboração de Plano de Gestão de Água de Lastro para todos os

portos e navios, sendo que os navios deverão também realizar o tratamento da água de lastro por meio de métodos físicos ou por meio do uso de biocidas (Fernandes & Neto, 2009). A Convenção Internacional para Controle e Gerenciamento da Água de Lastro e Sedimentos de Navios vigorou em 8 de setembro de 2017, quando foi atingida a meta de 30 países que juntos representam o mínimo de 35% da arqueação bruta da frota mercante mundial. No Brasil, o texto já havia sido aprovado via o Decreto Legislativo nº 148/2010. O controle da água de lastros é uma medida preventiva de novas invasões, e da dispersão da espécie no continente. A norma que orienta o gerenciamento da água de lastro de navios é a NORMAM-20/DPC, da Marinha do Brasil.

As ações de prevenção são de suma importância para conter a dispersão do mexilhão-dourado para as bacias hidrográficas não contaminadas no Brasil. Estas medidas devem envolver diferentes atores da sociedade e ser implementadas anteriormente à detecção da espécie invasora, com a finalidade de alertar para os principais vetores de dispersão, os quais são, em sua maioria, decorrentes de atividades humanas (Darrigran et al., 2012; Tabela 4). Além disso, segundo esses autores, as ações de prevenção devem integrar conhecimentos sobre a biologia e ecologia da espécie invasora, sobre métodos de manejo, políticas públicas, legislações e normatizações, questões econômicas, filosóficas e sociais.

Fillipo et al. (2012) documentou uma série de ações preventivas nos estados de São Paulo, Minas Gerais, Goiás, Mato Grosso e Mato Grosso do Sul integradas utilizando diversos meios de comunicação, como: rádio, televisão, jornais e internet. As ações foram realizadas em grandes festivais de pesca e festas regionais, com auxílio de autoridades locais, educadores, gestores e artistas. Além disso, uma série de palestras e materiais educativos foi distribuída à rede pública de educação. Além de material informativo, também foram fornecidas camisetas, bonés, canetas e adesivos com um número de telefone para o recebimento de ligações gratuitas, visando a facilitar a comunicação de novos registros de ocorrência do mexilhão-dourado. Este conjunto de ações pioneiras e integradas são extremamente efetivas e serve como um modelo a ser seguido em todo o território nacional, especialmente nas bacias ao Norte e ao Nordeste do país, as quais estão geograficamente próximas de áreas invadidas pelo mexilhão-dourado.

Materiais informativos fornecidos por FURNAS e CEMIG esclarecem sobre procedimentos de desinfecção e remoção de incrustações em apetrechos de pesca e embarcações. No entanto, estes procedimentos carecem de padronização e regulamentação emergencial para que possam ser adotados em largas escala em águas brasileiras com a finalidade de evitar a dispersão da espécie invasora.

5 ERRADICAÇÃO

Não são conhecidos casos de erradicação do mexilhão-dourado após a detecção e dispersão da espécie em países da América do Sul e da Ásia. Os atributos desta espécie invasora favorecem a rápida dispersão entre bacias hidrográficas por vetores naturais e artificiais. É prioritário o estabelecimento de medidas e procedimentos para minimizar o risco de dispersão da espécie para áreas ainda não invadidas. Nos casos onde o controle é possível, por exemplo em plantas industriais, é necessário o estabelecimento de diretrizes e boas práticas para mitigar os possíveis impactos ao meio ambiente. Atualmente não existem métodos disponíveis para a erradicação do mexilhão-dourado, o que torna esta tarefa muito difícil até mesmo em locais com início de invasão (Darrigran & Damborenea, 2009).

6 MONITORAMENTO

Os programas de monitoramento destinam-se a obter dados populacionais sobre a dispersão dos bivalves invasores em novas áreas, possibilitando aos usuários dos recursos hídricos se prepararem para enfrentar o problema das incrustações em suas instalações (Claudi & Mackie, 1994). Além disso, fornecem subsídios para que agências ambientais planejarem suas ações de manejo.

O monitoramento de moluscos invasores pode ser dividido em três níveis, de acordo com seus objetivos, segundo Mackie & Claudi (2010): 1) monitoramento para detecção precoce da espécie invasora em áreas onde ainda não existem registros, mas com condições limnológicas, atributos de dispersão e resultados de análises de risco que justificam o esforço; 2) monitoramento temporário pós-invasão em um sistema hidrográfico, visando compreender os níveis de infestação em diferentes épocas do ano, o período de reprodução, taxas de crescimento, longevidade, assentamento, com o objetivo de subsidiar ações de controle em sistemas industriais e em outras atividades humanas; 3) monitoramento de longa duração visando desenvolver estudos da distribuição espaço-temporal ao longo de grandes cursos d'água e suas bacias hidrográficas, para determinar variações populacionais e suas relações com variáveis ambientais entre diferentes compartimentos do corpo hídrico, caracterizados por distintos níveis de profundidade, substratos, qualidade de água, etc. Outros dois objetivos de programas de monitoramento foram reconhecidos por Claudi & Mackie (1994): 4) determinar a efetividade de programas de controle e 5) minimizar os custos de programas de controle.

6.1 Protocolos

Segundo Claudi & Mackie (1994), existem dois tipos de monitoramento: 1) *mainstream* consiste no monitoramento convencional executado no corpo hídrico, no qual são realizadas coletas diretamente nas águas superficiais, como lagos, rios e reservatórios, 2) *sidestream*, o qual pode ser

denominado como monitoramento externo de fluxo lateral, sendo as amostragens realizadas em dispositivo acoplado a um sistema de distribuição ou circulação de água, em uma planta industrial ou de tratamento de água. Os métodos de monitoramento relatados a seguir são do tipo *mainstream*.

6.1.1 QUALITATIVO DE LARVAS - PCR

As larvas véligers constituem um importante atributo do sucesso da invasão, por isso precisam ser detectadas logo que sejam introduzidas em uma nova área, sobrevivam ao transporte de água, no lastro de navios ou em reservatórios (cisternas e viveiros) de pequenas embarcações, inicialmente ocorrendo em pequenas quantidades. Métodos qualitativos permitem apenas avaliar a presença de larvas, não sendo possível determinar a densidade populacional, mas são muito úteis para a detecção da espécie em áreas onde a população é incipiente, ou se encontra em fase de lapso (repouso). O método qualitativo de detecção de larvas no plâncton foi desenvolvido por Pie et al. (2006) e encontrase descrito tanto no livro organizado Darrigran & Damborenea (2009) editado por AES Tietê, como no livro organizado por Mansur et al. (2012) editado por FURNAS, ambos com textos em português. Este método tem como base procedimentos simples de biologia molecular (Tschá et al., 2009). Embora apresente maior sensibilidade do que o exame de larvas por microscopia óptica, o custo deste método é mais elevado e requer laboratório básico de biologia molecular, com técnicos treinados. Os procedimentos laboratoriais estão detalhadamente descritos em Tschá et al. (2009 e 2012), e consiste basicamente em: coletar uma amostra de zooplâncton, filtragem da amostra à vácuo, extração de DNA do zooplâncton, amplificação com base na reação em cadeia da polimerase do DNA (Polymerase Chain Reaction - PCR) utilizando os primers (LIMNO.COIR1 e LIMNO.COIF1), eletroforese e visualização dos resultados em gel agarose, permitindo a detecção da presença ou não de *L. fortunei*.

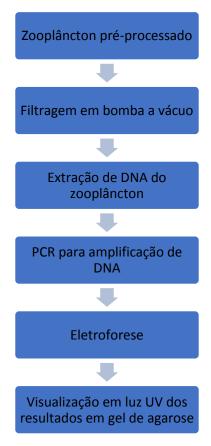


Figura 19. Etapas do protocolo PCR de detecção de presença e ausência de larvas do mexilhão-dourado. Fonte: Tschá et al. (2012).

6.1.2 QUANTITATIVO DE LARVAS - ESTEREOMICROSCOPIA ÓPTICA

A quantificação de larvas é extremamente necessária para que se possa compreender a dinâmica reprodutiva, acompanhar o crescimento populacional, o recrutamento dos substratos e avaliar eficácia de métodos de controle populacional. O método quantitativo utilizando microscopia ótica encontra-se descrito em Santos et al. (2012), consiste na filtração de um volume de água conhecido (1000L), utilizando rede de plâncton com malha de abertura 30 μm, com o auxílio de bomba de sucção, resultando na concentração da amostra retirada da coluna d'água. Posteriormente, a quantificação é realizada ao microscópio estereoscópico, para o cálculo de densidades expressas como larvas.m⁻³. Embora apresente menor sensibilidade do que os métodos moleculares, o custo deste método é menor. No entanto exige um técnico treinado para reconhecer as fases larvais do mexilhão-dourado (Figura 3), as quais foram descritas por Santos et al. (2005) e distinguí-las dentre as demais larvas de bivalves nativos e invasores Cyrenidae, as quais encontram-se descritas em Mansur et al. (2012).

Figura 20. Coleta de amostras de plâncton para quantificação de larvas de *L. fortunei*. A) filtração em rede de plâncton, B) rede de plâncton, C) bomba de sucção, D e E) remoção da amostra da rede e F) fixação da amostra em álcool 80%. Fonte: Santos et al. (2012b), com autorização dos autores e editores.

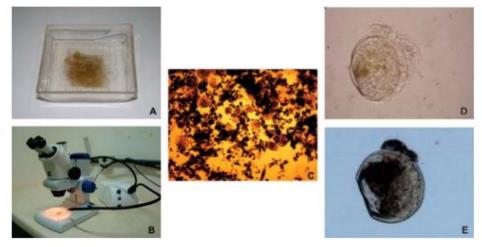


Figura 21. Quantificação de larvas de do mexilhão-dourado. A) amostra na placa de contagem, B) estereomicroscópio com amostra em exame, C) amostra sendo observada, D e E) larvas exibindo o véu. Fonte: Santos et al. (2012b), com autorização dos autores e editores.

6.1.3 QUANTIFICAÇÃO DE LARVAS - ESTEREOMICROSCOPIA ÓPTICA COM LUZ POLARIZADA

Este método tem como base um fenômeno provocado na luz (chamado birrefringência), o qual devido ao formato da concha larvar, que possibilita visualizar os organismos ao estereomicroscópio por meio da incidência de luz polarizada, destaca as larvas sobre um fundo negro, mesmo em amostras ricas em material suspenso (Silva et al., 2016).

6.1.4 QUANTITATIVO DE LARVAS - PCR EM TEMPO REAL

O método quantitativo de detecção de larvas no plâncton usando a reação em cadeia da polimerase quantitativa em tempo real (qPCR) é extremamente sensível (Endo & Nogata, 2012), e requer aparatos um pouco mais sofisticados, o que encarece seu uso, quando comparado ao método

qualitativo molecular e ao método quantitativo por microscopia ótica. Mas, segundo os autores, é um método muito eficaz para o monitoramento do processo de bioinvasão e confirmação de novos registros em áreas com baixa densidade de larvas, ou com ausência de técnicos treinados para reconhecer os estágios larvais do mexilhão-dourado. Os procedimentos laboratoriais se encontram detalhadamente descritos no livro distribuído por FURNAS, no capítulo de Endo & Nagato (2012). Esses consistem basicamente em: coletar uma amostra de zooplâncton, fixá-la em álcool 99,5% e armazenar a 4°C até o momento da análise, realizar amplificação de qPCR, verificar a especificidade da amplificação de qPCR e estimar a quantidade de larvas *L. fortunei* traçando-se os valores de C_t na curva padrão.

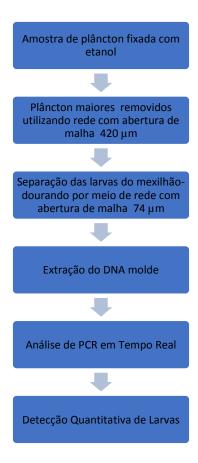


Figura 22. Etapas do protocolo qPCR de detecção de presença e ausência de larvas do mexilhão-dourado. Fonte: Endo & Nogata (2012).

6.1.5 QUANTIFICAÇÃO DE LARVAS - ANÁLISE AUTOMATIZADA DE PARTÍCULAS

Uma amostra é deslocada por um fluxo gerado através de uma bomba de sucção, que está acoplada a um microscópio e este a um computador, equipado com um programa de captação de imagens, o qual explora automaticamente toda a amostra, em busca de partículas de interesse, no caso, larvas do mexilhão-dourado (Silva et al., 2016).

6.1.6 RECRUTAS E ADULTOS - RASPADORES

Quando atinge a fase bentônica, o mexilhão-dourado coloniza substratos duros. Portanto, as conchas raspadoras são uma boa opção para amostragem rápida, podendo ser utilizadas para a amostragem quantitativa de paredões de concretos e outras superfícies lisas, nas quais o mexilhão tenha se incrustado. Pereira et al. (2012), descreve o equipamento como um recipiente de alumínio ou aço-inox, em forma de meia-lua com o fundo reto e crivado, rosqueado em um cabo; a extremidade reta da meia lua apresenta borda denteada, a qual é utilizada para raspar superfícies incrustadas; a área amostrada é delimitada considerando-se a largura do amostrador e a distância perpendicular à largura do amostrador, percorrida no processo de raspagem.

Figura 23 - Concha raspadora para coleta de incrustações do mexilhão-dourado. Fonte: Pereira et al., 2012.

6.1.7 QUANTIFICAÇÃO DE RECRUTAS E ADULTOS - BUSCA-FUNDO

Amostradores do tipo busca-fundo podem ser utilizados para a amostragem do mexilhão-dourado na comunidade zoobentônica do fundo de rios e reservatórios (Takeda et al., 2012; Pereira et al., 2012b). Os diversos modelos e considerações sobre as vantagens e desvantagens do uso destes equipamentos encontram-se detalhadamente descritos em Pereira et al. (2012).

6.1.8 QUANTIFICAÇÃO DE RECRUTAS E ADULTOS - SUBSTRATOS ARTIFICIAIS

Os substratos artificiais são artefatos que imitam características do habitat natural dos organismos bentônicos. Dois tipos de substratos artificiais foram amplamente utilizados no Brasil, em programas de monitoramento e projetos de pesquisa referentes ao mexilhão-dourado, a estruturas

tridimensionais de madeira no formato de "X" e os substratos cerâmicos, tijolos ou tijoletas. Estes substratos foram amplamente utilizados em estudos realizados por órgãos ambientais e empresas concessionárias de energia hidrelétrica. O método consiste em suspender os substratos na coluna d'água e acompanhar a colonização de recrutas mensalmente e de adultos a cada 3 ou 4 meses. Os métodos com base em substratos artificiais encontram-se detalhadamente descritos em Pereira et al. (2012).

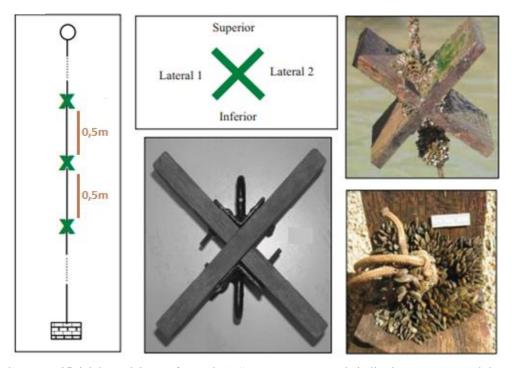


Figura 24. Substrato artificial de madeira em forma de "X" para amostragem de indivíduos recrutas e adultos do mexilhão-dourado. Fonte: Pereira et al. (2012), com autorização dos autores e editores.

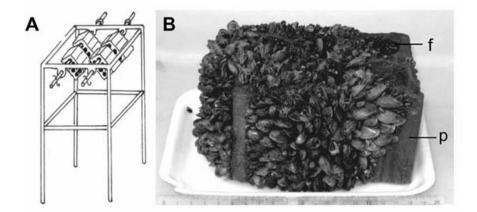


Figura 25. Tijolos de cerâmica utilizados como substrato artificial amostragem de indivíduos recrutas e adultos do mexilhão-dourado. Fonte: Pereira et al. (2012), com autorização dos autores e editores.

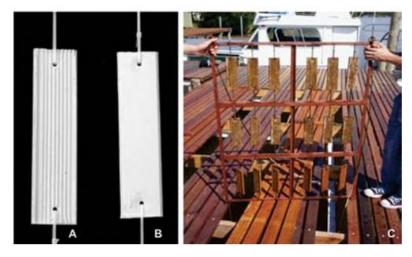


Figura 26. Tijoletas de cerâmica utilizados como substrato artificial amostragem de indivíduos recrutas e adultos do mexilhão-dourado. Fonte: Pereira et al. (2012), com autorização dos autores e editores.

7 CONTROLE POPULACIONAL

Segundo Darrigran & Damborenea (2009), o controle populacional do mexilhão-dourado é focado principalmente em instalações industriais, podendo ser planejado por meio de duas abordagens: 1) tratamento proativo, no qual dosagens de moluscicidas são aplicadas para controlar o assentamento de larvas por meio de aplicações intermitentes, contínuas ou semicontínuas; esta abordagem é adotada desde o início do período de liberação de larvas no plâncton; 2) tratamento reativo, no qual o alvo são os indivíduos adultos; o qual pode ser aplicado no final de uma estação reprodutiva ou de forma periódica. Ambas as abordagens aqui tratadas necessitam de monitoramento populacional para o acompanhamento das flutuações populacionais de larvas e adultos. O controle populacional de bivalves invasores pode ser realizado por meio agentes de controle químicos, físicos e biológicos.

No Brasil, é obrigatório o Registro Especial Temporário (RET) para produtos técnicos, prémisturas, agrotóxicos e afins destinados à pesquisa e experimentação. O Registro Especial Temporário é, de acordo com o Decreto 4.074/2002, o ato privativo de órgão federal competente, destinado a atribuir o direito de utilizar um agrotóxico, componente ou afim para finalidades específicas em pesquisa e experimentação, por tempo determinado, podendo conferir o direito de importar ou produzir a quantidade necessária à pesquisa e experimentação.

Cabe ao Ministério da Agricultura, Pecuária e Abastecimento conceder o registro inclusive o RET, de agrotóxicos, produtos técnicos, pré-misturas e afins para uso nos setores de produção, armazenamento e beneficiamento de produtos agrícolas, nas florestas plantadas e nas pastagens, atendidas as diretrizes e exigências dos Ministérios da Saúde e do Meio Ambiente (Decreto 4.074/2002). Já ao Ministério da Saúde, cabe conceder o registro, inclusive o RET, de agrotóxicos,

produtos técnicos, pré-misturas e afins destinados ao uso em ambientes urbanos, industriais, domiciliares, públicos ou coletivos, ao tratamento de água e ao uso em campanhas de saúde pública atendidas as diretrizes e exigências dos Ministérios da Agricultura e do Meio Ambiente. Por fim, cabe o Ministério do Meio Ambiente, por meio do IBAMA, conceder o registro, inclusive o RET, de agrotóxicos, produtos técnicos e pré-misturas e afins destinados ao uso em ambientes hídricos, na proteção de florestas nativas e de outros ecossistemas, atendidas as diretrizes e exigências dos Ministérios da Agricultura, Pecuária e Abastecimento e do Ministério da Saúde.

É importante salientar as definições dispostas na Lei nº 7.802, de 11 de julho de 1989, que dispõe sobre a pesquisa, a experimentação, a produção, a embalagem e rotulagem, o transporte, o armazenamento, a comercialização, a propaganda comercial, a utilização, a importação, a exportação, o destino final dos resíduos e embalagens, o registro, a classificação, o controle, a inspeção e a fiscalização de agrotóxicos, seus componentes e afins, e dá outras providências. De acordo com a Lei nº 7.802/1989, são considerados agrotóxicos os produtos e os agentes de processos físicos, químicos ou biológicos, destinados ao uso nos setores de produção, no armazenamento e beneficiamento de produtos agrícolas, nas pastagens, na proteção de florestas, nativas ou implantadas, e de outros ecossistemas e também de ambientes urbanos, hídricos e industriais, cuja finalidade seja alterar a composição da flora ou da fauna, a fim de preservá-las da ação danosa de seres vivos considerados nocivos. De acordo com seu artigo 3°, os agrotóxicos, seus componentes e afins só poderão ser produzidos, exportados, importados, comercializados e utilizados, se previamente registrados em órgão federal, de acordo com as diretrizes e exigências dos órgãos federais responsáveis pelos setores da saúde, do meio ambiente e da agricultura.

Dessa forma, todas as formas de controle do mexilhão-dourado que se enquadrarem na definição disposta na Lei nº 7.802/1989 devem ser registradas para que sejam produzidas, exportadas, importadas, comercializadas ou utilizadas no país, seguindo as indicações previstas na Lei e em seu Decreto Regulamentador de n° 4.074, de 4 de janeiro de 2002.

De acordo com o Decreto 4074/2002, cabe ao Ministério do Meio Ambiente, especialmente ao IBAMA:

- I Avaliar os agrotóxicos e afins destinados ao uso em ambientes hídricos, na proteção de florestas nativas e de outros ecossistemas, quanto à eficiência do produto;
- II Realizar a avaliação ambiental, dos agrotóxicos, seus componentes e afins, estabelecendo suas classificações quanto ao potencial de periculosidade ambiental;
- III Realizar a avaliação ambiental preliminar de agrotóxicos, produto técnico, pré-mistura e afins destinados à pesquisa e à experimentação;

IV - Conceder o registro, inclusive o RET, de agrotóxicos, produtos técnicos e pré-misturas e afins destinados ao uso em ambientes hídricos, na proteção de florestas nativas e de outros ecossistemas, atendidas as diretrizes e exigências dos Ministérios da Agricultura, Pecuária e Abastecimento e da Saúde.

Em se tratando de um produto à base de agente microbiológico, o mesmo irá se enquadrar no Anexo III da INC nº 25/2005, o qual traz uma relação de produtos específicos (a exemplo dos agentes biológicos de controle, microbiológicos, com exceção daqueles obtidos por meio de técnicas de engenharia genética). Para a solicitação de Registro Especial Temporário, o requerente deverá encaminhar o disposto no Anexo II da referida Instrução, o qual informa o Relatório Técnico para produtos listados no Anexo III. As legislações que regem os procedimentos a serem adotados quando da solicitação de RET são o Decreto 4074, de 4 de janeiro de 2002, e a Instrução Normativa Conjunta nº 25, de 14 de setembro de 2005.

De acordo com a INC nº 25/2005: Além do previsto no art. 7º desta Instrução Normativa, este documento deve ser assinado pelo proprietário da terra e pelo requerente, ou por seus representantes legalmente constituídos. Uma vez concedido o RET, e após o período de experimentação do produto, poderá ser requerido o registro do mesmo. Nesse caso, em se tratando de agente microbiológico de controle, deverá ser obedecido o disposto na INC nº 03/2006, a qual estabelece procedimentos a serem adotados para efeito de registro de agentes microbiológicos empregados no controle de uma população ou de atividades biológicas de um outro organismo vivo considerado nocivo. Nesse caso, deverão ser encaminhados, no momento da solicitação de registro (que também deve ser realizada nos 3 Órgãos), todos os documentos e estudos relacionados na referida norma. Ainda há de se considerar a Instrução Normativa Nº 5, de 26 de agosto de 2016 que estabelece o procedimento "quanto ao pleito de registro especial temporário referente a agente biológico ou a produtos à base de agentes microbiológicos, **exóticos ou sem comprovação de ocorrência natural no País**, destinados ao controle biológico de pragas e doenças, até que sejam estabelecidos critérios para a avaliação dos riscos de sua introdução em território brasileiro". Esta resolução deve ser considerada para o uso de produtos à base de agentes de controle biológico em sistemas hidrográficos brasileiros.

7.1 CONTROLE FÍSICO

O controle físico pode ser feito por meio de remoção mecânica, bombas de alta pressão, ondas sonoras, radiação Ultravioleta e por meio de revestimentos anti-incrustantes sem biocidas (Zurita, 2012).

7.1.1 RASPAGEM

Uma das formas de controle físico é a remoção mecânica por meio de raspagem, utilizando robôs ou mergulhadores, sendo este último muito utilizado por empresas públicas de captação e tratamento de água no Rio Grande do Sul (DMAE e CORSAN) e Paraná (SANEPAR). No entanto, este tipo de controle danifica as superfícies dos materiais e podem abrir precedentes para a corrosão, além do custo elevado e do tempo requerido para a limpeza, o qual exige a parada de equipamentos.

7.1.2 FILTRAÇÃO

Claudi & Oliveira (2015b) sugerem filtros de areia ou filtros mecânicos autolimpantes para remover larvas do mexilhão em plantas industriais, utilizando um tamanho de poro de 150 µm. Segundo as autoras, experiências no Canadá foram satisfatórias para a remoção de véliger de bivalves invasores naquele país. Trata-se de uma forma de tratamento proativo.

7.1.3 JATEAMENTO

Trata-se de uma forma de tratamento reativo, no qual o controle físico pode ser feito por meio de jateamento utilizando bombas de alta pressão. É um ótimo recurso para remover os mexilhões aderidos aos equipamentos, superfícies metálicas e ao concreto. Tem sido recomendado por Oliveira et al. (2014) para a limpeza de tanques redes utilizados na piscicultura em reservatórios. A medida é eficiente, mas requer cuidados com a disposição dos mexilhões removidos, os quais devem ser descartados em terra para evitar o aumento matéria orgânica e consequentemente da demanda bioquímica de oxigênio no ambiente aquático.

7.1.4 RADIAÇÃO ULTRAVIOLETA

O tratamento com radiação ultravioleta é uma forma de tratamento proativo. Para *D. polymorpha*, uma dosagem de 100 mWs/cm² inibe o assentamento deste Dreissenidae em ambientes da América do Norte (Claudi & Oliveira, 2015b). O controle físico por meio de radiações ultravioleta foi testado em unidade piloto por Santos et al. (2012) com água bruta. Os autores encontraram uma dose de 324mWs/cm² para inativar 50% das larvas em num intervalo de fluxo entre 1400 e 4200 L/h e de 781 mWs/cm² para atingir 100%. No entanto, Claudi & Oliveira (2015b) ressaltam que o experimento citado acima não considerou a absorbância da água utilizada, não avaliou a mortalidade retardada e não mediu a dose real, estimando-a com base em especificações do fabricante da lâmpada, resultando em doses superestimadas. Dosagens menores foram encontradas por Perepelizin & Boltovskoy (2014): 149 mWs/cm² para causar 100% de mortalidade em 25,8°C e 103 mWs/cm² para causar 100% de mortalidade em 25,8°C e 500 mWs/cm² para causar 100% de mortalidade em 25,8°C e 103 mWs/cm² para causar 100% de mortalidade em 25,8°C e 103 mWs/cm² para causar 100% de mortalidade em 25,8°C e 103 mWs/cm² para causar 100% de mortalidade em 25,8°C e 103 mWs/cm² para causar 100% de mortalidade em 25,8°C e 103 mWs/cm² para

elevado teor de sólidos suspensos nos rios sulamericanos é uma das grandes limitações à aplicação deste método.

7.1.5 CAMPO MAGNÉTICO

Esta tecnologia é uma das mais eficientes para inibir o assentamento, ocasionando a mortalidade em no mínimo uma quinzena, tem sido muito utilizada por empresas de captação e tratamento de água no Rio Grande do Sul (Claudi & Oliveira, 2015b).

7.1.6 CORRENTE ELÉTRICA

Katsuyama et al. (2005) verificaram que uma voltagem de 7kV imobilizou 80% das larvas em condições de fluxo inviabilizando o assentamento.

7.1.7 ULTRASSOM

O ultrassom é uma forma de tratamento proativo. Santos et al. (2012b) testaram efeitos acústicos do ultrassom sobre véligers em laboratório e encontrou uma dose de 44kWs/L (>100kHz) para causar 30% de mortalidade de *L. fortunei*, enquanto que 100% de mortalidade foi verificado numa frequência de 20kHz. Aplicações de ultrassom foram feitas na UHE Peixe Angical, no rio Tocantins para o controle de Corbiculídeos (Bergmann, dados não publicados), cujas larvas sofrem ação semelhante à verificada no mexilhão-dourado. No entanto, é necessário um isolamento acústico muito bem planejado para manter estes equipamentos funcionando na planta sem afetar a saúde ocupacional dos trabalhadores, assim como não causar problemas às estruturas dos equipamentos.

7.1.8 TURBULÊNCIA

O fluxo turbulento influencia a distribuição do mexilhão-dourado nas bacias hidrográficas (Campos et al., 2016), sendo que a ausência de problemas de incrustação em determinados reservatórios pode ser atribuída ao alto fluxo. De acordo com Claudi & Oliveira (2015), o fluxo turbulento é gerado por desestabilização do fluxo, ao se mover por uma superfície de alta rugosidade, formando padrões instáveis de vórtices. Fluxos turbulentos criados pela passagem de água por placas perfuradas podem causar 80% de mortalidade após 5 minutos (Xu et al., 2013). O assentamento de larvas planctônicas é dificultado em velocidades de fluxo superiores a 1,3m/s (Matsui et al, 2002), no entanto é dificultoso manejar a velocidade na maioria dos equipamentos industriais (Mackie e Claudi, 2010). No Brasil, não são conhecidas experiências com êxito.

7.2 CONTROLE QUÍMICO

Claudi & Oliveira (2015) compilaram estratégias de controle químico do mexilhão-dourado, testadas até o momento, listando 24 compostos químicos (Tabela 5), seus efeitos, doses letais e o percentual de mortalidade. Das 88 avaliações de toxicidade de agentes químicos de controle do mexilhão-dourado compilados pelas autoras, a maioria foi realizada mediante a exposição de indivíduos adultos (91%), contra apenas 9% destes estudos sendo realizados mediante à exposição de estágio larvar. Controlar o assentamento é realmente o maior desafio, pois interfere no ciclo de vida do organismo invasor, mas experimentos com estágio larvar são mais trabalhosos e requerem maiores cuidados quanto à precisão dos resultados, sendo necessário avaliar a mortalidade retardada (Claudi & Oliveira, 2015). Ainda de acordo com esse levantamento, cerca de 71,6% dos experimentos foram realizados em regime estático, e apenas 28,4% foram realizados em regime de fluxo contínuo. Os experimentos em fluxo contínuo apresentam simulações mais reais quanto à diluição e a biodisponibilidade dos agentes de controle, bem como da produção de subprodutos que poderão conferir toxicidade a biota e ao homem. A maioria dos agentes químicos de controle exige dosagens muito elevadas, conferindo riscos ao ambiente aquático e a biota, muitos deles carecem de estudos ecotoxicológicos que aprofundem o conhecimento sobre a ecotoxicidade.

No Brasil, apenas dois produtos receberam registro emergencial, de acordo com Decreto nº 4.074/2002 para uso exclusivamente industrial, são eles: o MXD (Instrução Normativa IBAMA nº 17, de 21 de Outubro de 2015) e o Dicloro Isocianurato Diclorocianurato de Sódio (Instrução Normativa IBAMA nº 18, de 21 de Outubro de 2015). Todos os demais produtos citados a seguir neste item não são regulamentados e não tem permissão para uso industrial e tão pouco em ambiente natural. A utilização dos produtos deve seguir estritamente as indicações de uso contempladas no registro, não podendo ser, portanto, utilizado em ambientes não previstos no registro.

7.2.1 REVESTIMENTOS

Revestimentos antiincrustantes com diferentes formulações de biocidas com base em cobre e zinco foram testados por Bergmann et al. (2010a, 2010b) para o controle do mexilhão-dourado no Rio Tietê e Rio Jacuí. No entanto, esses não mostraram resultados satisfatórios, pois o crescimento de biofilmes sobre os corpos de prova revestidos com estas tintas, foram sucedidos por incrustações do mexilhão-dourado. Além disso, apresentam vida útil bastante reduzida. Coutinho et al. (2012) avaliou a toxicidade de nove formulações comerciais de revestimentos (tintas) de ampla aplicação na indústria naval para o controle de incrustações, constatando toxicidade alta para o microcrustáceo *Daphinia similis*, em três formulações, média em duas formulações, e baixa em quatro formulações.

Dentre revestimentos com toxicidade baixa e média, cinco formulações foram escolhidas, por apresentarem eficiência de antiaderência ao mexilhão-dourado em experimentos de laboratório, para aplicação em barcos utilizados na navegação, no rio Paraná (Porto Rico), Lago Guaíba (Porto Alegre) e no Rio Grande (São Paulo). Os experimentos resultaram na seleção de três revestimentos anti-incrustantes com baixa toxicidade a organismos não-alvo, os quais são listados a seguir em ordem decrescente de eficiência: tinta Copper Bottom 60 do fabricante Sherwin Williams, Aemme Long Life Plus e Revran AF LCL 870. Em estudos de colonização de macroinvertebrados em corpos de prova revestidos com as mesmas tintas, Fujita et al. (2015) verificaram que os revestimentos Coper Botom 60 e Aemme Long Life Plus também inibiam a colonização de macroinvertebrados nos substratos, afetando a riqueza e a densidade de taxa. A liberação de biocidas de tintas depende de uma série de fatores como a solubilização do biocida, a qual depende do contato do revestimento com a água, determinado pela velocidade, fricção, pH que determina a lixiviação, a temperatura, entre outros (Caprari, 2009).

7.2.2 AJUSTE DE PH

Ajuste do pH utilizando Hidróxido de Sódio (não regulamentado, sem permissão de uso) foi testado por Calazans e Fernandes (2012) e Montresor et al. (2013) (Tabela 5). Devido a ampla faixa de tolerância ao pH (4-11, após cinco dias de exposição) apresentada por *L. fortunei* (Pereira, 2014), qualquer ajuste necessário para controlar a incrustação resultaria em valores não apropriados para a manutenção da vida aquática, considerando que as classes I, II e III da Resolução CONAMA nº 357 do estabelecem o padrão de pH, com valores mínimos e máximos de 6 e 9, respectivamente. O ajuste do pH compreende uma forma de tratamento proativo (Claudi & Oliveira, 2015).

7.2.3 MXD-100

Por meio da Instrução Normativa IBAMA nº17, de 21 de outubro de 2015, o produto foi **regulamentado por meio de registro emergencial**, apenas para ser utilizado em sistemas de resfriamento de usinas hidrelétricas, com o objetivo de criar um micro-ambiente inapropriado para a fixação das larvas do mexilhão-dourado, visando prevenir as infestações do molusco. As seguintes orientações da Instrução Normativa IBAMA nº17 devem ser seguidas: "a dose poderá variar "entre 1 mg/l a 7 mg/L, de acordo com a dimensão dos dutos e o nível de incrustação dos mesmos; o teor de ingrediente ativo a ser alcançado para garantir a eficácia do tratamento varia de 0,08 mg/L a 0,56 mg/L, assim permanecendo no sistema aquoso por 10 minutos a cada 8 horas, totalizando 30 minutos diários; concentrações de MXD-100 superiores a 2 mg/L só poderão ser utilizadas pelo prazo máximo de 30 dias, e após esse período devem ser reduzidas para 1 a 2mg/L; a aplicação do produto, sem prévia diluição, deverá ser feita com o uso de sistema de controle acoplado ao sistema de resfriamento

das unidades geradoras da usina hidrelétrica, sendo o produto dosado automaticamente, por bomba dosadora, conforme programação estabelecida e a manutenção da concentração do produto no sistema deve ser monitorado; deve ser realizado monitoramento do efluente a ser lançado no corpo hídrico, além de outras exigências que possam vir a ser estabelecidas pelo órgão ambiental competente, nos termos da Resolução CONAMA n° 467 de 2015 e Resolução CONAMA n° 430 de 2011.

Os princípios ativos do MXD-100 são Cloreto de Didecil Dimetilamônio (nº CAS 7173-51-5) e Cloreto de Alquil Amido Propil Dimetil Benzil Amônio (nº CAS 124046-05-5) (IBAMA, 2015). Concentrações efetivas de MXD-100 para causar a mortalidade de *L. fortunei* foram avaliadas por vários autores (Pereyra et al., 2011; Mata et al. 2013; Montresor et al. 2013; Tabela 5).

A toxicidade do MXD ao crustáceo *Macrobrachium amazonicum* foi avaliada por Ribeiro & Pelli (2011). Os autores constataram que o produto apresentou toxicidade aguda numa concentração de 1,93 mg.L⁻¹. Nos bioensaios, o produto gerou demanda química e bioquímica de oxigênio.

7.2.4 OZÔNIO

De acordo com Claudi & Oliveira (2015), ozônio (não regulamentado, sem permissão de uso) exerce um controle eficaz em concentrações da ordem de 0,15-0,20 mg/L. Esta tecnologia tem um custo muito elevado, tanto quanto a aquisição de equipamentos, quanto para a geração das dosagens necessárias para o controle populacional (Darrigran & Damborenea, 2009). No Brasil, existem poucos dados na literatura sobre estudos científicos testando a eficácia do ozônio, bem como de subprodutos gerados pelo mesmo, embora os autores acima afirmem não haver produção de resíduos. Compreende uma forma de tratamento proativo (Claudi & Oliveira, 2015).

7.2.5 DICLOROCIANURATO DE SÓDIO

Por meio da Instrução Normativa IBAMA nº 18, de 21 de outubro de 2015, o produto foi regulamentado por meio de registro emergencial, apenas para ser utilizado em sistemas de resfriamento de usinas hidrelétricas, com o objetivo de criar um micro-ambiente impróprio para a fixação das larvas do mexilhão-dourado, visando prevenir as infestações do molusco. As seguintes orientações da Instrução Normativa devem ser seguidas: "injeção de solução de dicloro isocianurato de sódio, com a concentração de 1,5 mg/L de cloro livre, diretamente na água do sistema de resfriamento, durante duas horas por dia, com concentração máxima de 0,01 mg/l de cloro residual na saída do efluente; a aplicação do produto deverá ser feita com o uso de sistema de controle acoplado ao sistema de resfriamento das unidades geradoras da usina hidrelétrica, composto por três unidades distintas que atuem de forma integrada, unidade automatizada de preparação da solução a ser administrada; unidade de dosagem e unidade de leitura e verificação automatizada do teor de cloro ativo, de modo a assegurar que a dose indicada seja corretamente mantida durante o tratamento; deve

ser implantado um sistema de monitoramento da concentração de cloro residual e de trihalometanos no efluente a ser lançado no corpo hídrico, além de outras exigências que possam vir a ser estabelecidas pelo órgão ambiental competente, nos termos da Resolução CONAMA n° 467 de 2015 e da Resolução CONAMA n° 430 de 2011. Compreende uma forma de tratamento reativo (Claudi & Oliveira, 2015).

O Dicloro Isocianurato de Sódio Anidro (CAS 2893-78-9) (IBAMA, 2015) é aplicado sobre as larvas do mexilhão-dourado. Segundo Claudi & Oliveira (2015), consiste em aplicações com a liberação lenta e constante de cloro, em baixas concentrações, com nenhuma formação de trihalometanos, e relatam aplicações nas usinas da CESP, em São Paulo (Tabela 5).

Segundo Macedo (2017) esta substância apresenta baixa toxicidade, por isso é amplamente utilizado no tratamento de águas de piscinas. No entanto, há uma carência de estudos em diferentes níveis tróficos para avaliar a toxicidade na biota aquática. Macedo et al. (1999) verificou picos em níveis de traços em cromatogramas de soluções de Dicloro Isocianurato de Sódio Anidro e sugeriu a necessidade de investigar a possibilidade de formação de subprodutos da cloração, como os derivados de ácido acético clorado, haloacetonitrilos, cloral hidratado, cloropicrin, clorofenóis e 3-cloro-4-(diclorometil)5-hidroxi-2(5H)-furanona (MX), em função da sua importância para a saúde pública.

7.2.6 OUTRAS FORMAS DE CLORO

Compostos de cloro (não regulamentado, sem permissão de uso), combinados com compostos orgânicos geram trialometanos, os quais são compostos tóxicos e carcinogênicos, enquanto o dióxido de cloro não gera trialometanos (Darrigran & Damborenea, 2009). O dióxido de cloro injetado continuamente em pontos de captação de água tem sido uma solução em estações de tratamento de água, demonstrando eficácia na remoção de cor e odor causada por cianobactérias, com redução de 80% dos custos em remoção de inscrustações (Claudi & Oliveira, 2015). Segundo Darrigran & Damborenea (2009), o cloro gasoso é tóxico, mas apresenta efetividade comprovada, sendo o sistema de cloração simples e fácil de construir. De acordo com Claudi & Oliveira (2015), gás de cloro, hipoclorito de sódio líquido, pellets de hipoclorito de cálcio ou pellets de dicloroisocianurato de sódio são amplamente utilizados para plantas no tratamento de água sulamericanos. Cataldo et al. (2003), Morton et al. (1976) e Fernandes et al. (2012) testaram uma série de produtos a base de cloro, sendo a toxicidade destes bem conhecida (Tabela 5). Diferentemente do efeito letárgico acarretado pelo sulfato de cobre aos indivíduos adultos do mexilhão-dourado, a toxicidade de produtos com base no cloro é rapidamente reconhecida pelo invasor, o qual se mantém hermeticamente fechado por algum tempo e depois acaba abrindo as valvas por falta de alimento, sendo a ação do agente controlador determinada pela temperatura a qual influencia na resistência dos moluscos (Claudi & Oliveira, 2015).

7.2.7 VELIGON [POLY (DIMETHYL DIALLYL AMMONIUM CHLORIDE)]

Boltovskoy e Cataldo (2003) testaram o efeito deste floculante (**não regulamentado, sem permissão de uso**) comumente utilizado em estações de tratamento d'água para causar a mortalidade do mexilhão-dourado, sendo necessário uma concentração de 50 mg.L⁻¹ para causar 80% de mortalidade tardia do mexilhão-dourado, após 11 dias de aplicação do produto no sistema. Enquanto, que Blanck et al. apud (1996) Claudi & Oliveira (2015), relataram valores inferiores entre 1,5 e 3,0 mg.L⁻¹para causar a mortalidade do mexilhão-zebra adulto. Compreende uma forma de tratamento reativo (Claudi & Oliveira, 2015).

7.2.8 SULFATO DE COBRE

Este produto não é **regulamentado e não tem permissão de uso**. Mediante testes de bancada, Soares et al. (2009) verificaram que a concentração de sulfato de cobre de 8,48 mg L-1 (equivalente a 1,23 mg L⁻¹ de cobre), necessária para causar a mortalidade de 50% da população do mexilhão-dourado foi superior ao padrão permitido pela legislação estadual do Rio Grande do Sul, para o lançamento de efluentes líquidos (0,5 mg L-1 de cobre) em águas superficiais segundo Resolução CONSEMA nº 128 /2006 e ao padrão para águas de classe 3 (0,013 mg L-1 de cobre) segundo Resolução CONAMA nº 357 /2005. Também são superiores às concentrações citadas por Colares et al. (2002b) para o controle do mexilhão-dourado (0,5 a 2,0 mg L-1 de sulfato de cobre). Compreende uma forma de tratamento reativo (Claudi & Oliveira, 2015).

7.2.9 CLAM-TROL CT-2/SPECTRUS CT1300

Segundo Claudi & Oliveira (2015), são compostos de uma família de tensoativos catiônicos (não regulamentados, sem permissão de uso) amplamente testados por Boltovskoy e Cataldo (2003), Cataldo et al. (2003) e Boltovskoy et al. (2005), que testaram a eficiência deste composto por meio de diversos delineamentos. Alguns destes experimentos foram realizados em Itaipu e as concentrações efetivas para causar a mortalidade do mexilhão-dourado (Tabela 5) foram mais elevadas e requerem mais tempo do que as concentrações necessárias para causar a mortalidade de dreissenídeos (Claudi & Oliveira, 2015). Compreende uma forma de tratamento reativo segundo as autoras acima.

7.2.10 H-130 (CLORETO DE DIDECYL DIMETHYL AMMONIUM)

Segundo Claudi e Oliveira (2015), este composto líquido (**não regulamentado, sem permissão de uso**) contendo solução de alquil amônio policanquial foi registrado como moluscicida para uso em indústrias na América do Norte, mas só pode ser utilizado com supervisão rigorosa devido aos procedimentos necessários de desativação anteriormente ao descarte. As concentrações

testadas por Boltovskoy e Cataldo (2003) (Tabela 5) mostraram dependência da temperatura na eficácia do produto: em 20°C, 100% de mortalidade após uma semana de exposição requer doses >10mg.L⁻¹, enquanto que em 25°C, 2,5 mg.L-1 suficientes. Mortalidade de 100% de dreissenídeos adultos expostos ao produto é obtida após 24h com apenas uma dose de 1mg.L⁻¹ (McMahon, 2008). Compreende uma forma de tratamento reativo (Claudi & Oliveira, 2015).

7.2.11 BAYLUSCIDE

O dicloro-2'nitro-4 'salicylanilide é um moluscicida (**não regulamentados, sem permissão de uso**) amplamente utilizado na agricultura, testado para o controle do mexilhão-dourado por Cataldo et al. (2003 (Tabela 5), o qual verificou mortalidade de até 90% (0,5-0,8 mg.L⁻¹, 25°C), concentração 5 vezes superior à necessária para atingir 100% de mortalidade de *Dreissena* spp. (Waller et al., 1993 apud Claudi & Oliveira, 2015). A aplicação deste tipo de produto não é recomendada para ambientes naturais pois poderiam afetar outros moluscos gastrópodes, para os quais foi originalmente produzido com fins de controle, assim como os demais bivalves de águadoce, que se encontram ameaçados devido às alterações de habitats, espécies invasoras, construção de reservatórios e poluição. Efeitos letais e subletais foram verificados sobre bivalves Unionidae nativos na América do Norte submetidos a exposição deste moluscicida (Newton et al., 2017). Compreende uma forma de tratamento reativo (Claudi & Oliveira, 2015).

7.2.12 BULAB 6002

O produto BULAB 6002 (dicloreto de poli [oxietileno (dimetiliminio) etileno (dimetiliminio) etileno]) (**não regulamentado, sem permissão de uso**) é um composto de amónio de policaternização catiónico líquido utilizado para o controle de algas em piscinas e como microbiocida para o controle de microorganismos em sistemas de água comerciais e industriais (Claudi & Oliveira, 2015). Foi testado por Boltovskoy & Cataldo (2003) e Darrigran & Damborenea (2001) demonstrando eficácia no controle do mexilhão-dourado (Tabela 5). Segundo Sprecher & Getsinger (2000), este composto apresenta toxicidade aguda para camarões da ordem Mysida em concentrações inferiores (13mg.L⁻¹) às necessárias para causar a mortalidade do mexilhão-dourado (20mg.L⁻¹) e superiores as concentrações para causar a mortalidade do mexilhão-zebra (2-8mg.L⁻¹). Compreende uma forma de tratamento reativo (Claudi & Oliveira, 2015).

7.2.13 BIOENCAPSULADOS

Agentes de controle químico com base em cloreto de potássio e amônia quaternária, microencapsulados por meio de substância aglutinante de amido, óleo e cera (**não regulamentado**, **sem permissão de uso**), foram testados para o controle do mexilhão-dourado (Fernandes et al., 2012;

Calazans et al., 2013). Métodos semelhantes foram desenvolvidos para o controle de Dreissenídeos. Segundo Claudi & Oliveira (2015), esta tecnologia libera uma quantidade de produto menor ao meio ambiente, por ser mais facilmente assimilado pelo filtrador que seleciona as biocápsulas durante a filtração. No entanto, o registro de permissão de uso deve acompanhar ensaios ecotoxicológicos utilizando espécies de bivalves nativos, bem como outros macroinvertebrados suspensívoros os quais poderiam ser potencialmente afetados por este tratamento no ecossistema aquático. Compreende uma forma de tratamento reativo (Claudi & Oliveira, 2015).

7.2.14 CLORETO DE AMÔNIO

Montresor et al. (2013) apud Claudi & Oliveira (2015) verificaram a eficiência da amônia sindicalizada (TA-N) (**não regulamentado, sem permissão de uso**) para causar a mortalidade de indivíduos adultos do mexilhão-dourado em concentrações ≤0,72 mg / L (23 e 27 ° C) (Tabela 5), as quais estariam abaixo dos padrões legais de lançamento desta substância definidos na Resolução Conama nº 357/2005 (5,6 mg/L TA-N em pH entre 7,5 e 8,0). Desta forma, o Cloreto de Amônio apresenta potencial para o controle do mexilhão-dourado. No entanto, é necessário avaliar os efeitos tóxicos a biota e obtenção de registro do produto junto ao IBAMA de acordo com Decreto nº 4074/2002. Compreende uma forma de tratamento reativo (Claudi & Oliveira, 2015).

7.3 CONTROLE BIOLÓGICO

Não existem experiências de campo e tão pouco produtos registrados para o controle biológico do mexilhão-dourado (não regulamentado, sem permissão de uso). As únicas informações são referentes a estudos de bancada realizados mediante bioensaios, utilizando formulações comerciais de agentes microbianos utilizados para o controle de dípteros: VECTOBAC®, composto por Bacillus thuringiensis sv israelensis sorotipo H-14, solução aquosa VECTOBAC® (AS), composta por Bacillus thuringiensis sv israelensis estirpe AM65-52 e grânulos dispersáveis em água VECTOLEX®, constituídos pelo componente ativo Bacillus sphaericus Cepa 2362. A toxicidade destas formulações ao mexilhão-dourado adulto foi avaliada por PEREIRA (2014) que verificou que VECTOBAC AS foi a formulação comercial mais eficiente para o controle de mexilhão-dourado. No entanto, a concentração letal de VECTOBAC AS para o controle do mexilhão é maior que a concentração efetiva para matar dípteros. A menor concentração testada de Vectobac® AS (equivalente a 2,0 x 10⁶ ITU/L contra o diptero-alvo), foi 6,7 vezes maior do que a concentração letal (298 ITU/L) observada por Zequi & Lopes (2007), para matar 95% de uma população do díptero Culex saltanensis em condições laboratoriais. Além disso, todas as concentrações testadas revelaram efeito tóxico agudo sobre o peixe Pimephales pomelas e o microcrustáceo Ceriodaphnia dubia, bem como crônico sobre a alga Pseudokirchneriella subcaptata.

7.4 DESTINAÇÃO

A Resolução CONAMA nº 467, de 16 de julho de 2015, dispõe sobre os critérios para a autorização de uso de produtos ou de agentes de processos físicos, químicos ou biológicos para o controle de organismos ou contaminantes em corpos hídricos superficiais. De acordo com a Resolução, um dos requisitos para obter autorização de uso de agentes químicos é a elaboração do "Plano de gerenciamento dos resíduos sólidos gerados, prevendo preferencialmente sua retirada do corpo hídrico superficial ou justificativa, caso isso não ocorra". Alguns estudos têm apresentado algumas alternativas para a utilização do resíduo do molusco, gerado após o tratamento, conforme descrito a seguir.

7.4.1 CORREÇÃO DE PH E FERTILIZAÇÃO DO SOLO

Por meio de experimentos Barbosa (2009), verificou que o resíduo moído de mexilhão-dourado forneceu para as plantas o equivalente a 24 kg de N ha-1 e de 21 kg de P₂O₅ ha-1, o que corresponde às eficiências relativas de 31% e 66% de N e P, respectivamente. Portanto, a utilização agrícola do resíduo do bivalve foi eficiente para a correção da acidez do solo e forneceu o suprimento parcial de nutrientes.

7.4.2 NUTRIÇÃO ANIMAL

Utilizando o mexilhão-dourado como matéria prima, uma farinha obtida por meio de processo de cocção, moagem e secagem do bivalve, apresentou concentrações médias de 159,173g/Kg para cálcio, 73,833g/Kg para proteína, 2,52 % de umidade e pH de 8,13. As condições sanitárias foram satisfatórias, mas a presença de metais tóxicos deve ser avaliada, pois pode resultar em restrições quanto ao uso na nutrição animal (Almeida et al. 2006).

Tabela 5. Resumo dos resultados de testes de agentes de controle químico testados com *Limnoperna fortunei*. Toxicante [nome comercial]: (1) 2,5 '-dicloro-4' -nitrosalilcarbonilida (ingrediente ativo: 70%) [Bayluscide WP70]; (2) Dióxido de cloro; (3) Polímero de cloreto de dialidimetilamônio (ingrediente ativo: 40%) [Veligon TL-M]; (4) cloreto de didicil dimetil amónio (ingrediente ativo: 50%) [H130M]; (5) Cloreto de N-alcilo cloreto de dimetilbenzilamónio (ingrediente ativo: 50%) [Clam-Trol CT-2]; (6) cloreto de N-alcilo cloreto de dimetilbenzilamónio (ingrediente ativo: 50%) [BULAB 6002]; (7) Dicloreto de poli (oxietileno (dimetilimino) etileno) (BULAB 6002]; (8) Dicloreto de poli (oxietileno (dimetiliminio) etileno) (dimetiliminio) etileno) (BULAB 6002]; (9) Cloreto de poli-dialildimetilamónio (microencapsulado); (10) Cloreto de potássio; (11) Cloreto de potássio (microencapsulado); (12) Amos quaternários + extratos de tanino [MXD-100]; (13) taninos Schinopsis balansae a 70% [ECOTEC-L]; (14) taninos Schinopsis balansae a 74% [ECOTEC-UA]; (15) taninos Schinopsis balansae a 86,5% [ECOTEC-MC]; (16) Cloreto de sódio; (17) Dicloroisocianurato de sódio; (18) hidróxido de sódio; (19) Hipoclorito de sódio; (20) Amónia total; (21) Ácido tricloroisocianúrico; (22) Amoníaco (NH3-N) unido; (23) Permanganato de potássio; (24) Sulfato de cobre. Fonte: Claudi & Oliveira (2015), com autorização da Springer e dos autores.

Agente de controle	LC50 ou % Mortalidade	Exposição [pós- exposição] (h)	No. de concentrações testadas (Intervalo, ppm)	Tamanho (mm)	Temp. (°C)	Condições de Teste	Referência
	1.0 ppm	48 [24–264]	7 (0.25-8)	A (15–25)	15	Estático	Cataldo et al. (2003)
l	0.8 ppm	48 [24–264]	7 (0.25-8)	A (15–25)	20	Estático	Cataldo et al. (2003)
	0.3 ppm	48 [24–264]	7 (0.25-8)	A (15–25)	25	Estático	Cataldo et al. (2003)
2	427.6 ppm	48 [48]	14 (1-800)	A (15–25)	25	Estático	Calazans et al. (2013)
3	3.88 ppm	720 [0]	5 (2–50)	A	20–22	Estático	Boltovskoy e Cataldo (2003)
3	815.04 ppm	264 [0]	5 (0.5–10)	L	20–22	Estático	Boltovskoy e Cataldo (2003)
4	0.56 ppm	720 [0]	5 (0.5–10)	A	20–22	Estático	Boltovskoy e Cataldo (2003)
4	1.03 ppm	264 [0]	5 (0.5–10)	L	20–22	Estático	Boltovskoy e Cataldo (2003)
4	2.9 ppm	48 [24–264]	8 (0.5–30)	A (15–25)	15	Estático	Cataldo et al. (2003)
4	1.7 ppm	48 [24–264]	8 (0.5–30)	A (15–25)	20	Estático	Cataldo et al. (2003)
4	0.8 ppm	48 [24–264]	8 (0.5–30)	A (15–25)	25	Estático	Cataldo et al. (2003)
5	2.43 ppm	36 [252]	5 (1–3)	A	20–22	Estático	Boltovskoy e Cataldo (2003)
5	0.98 ppm	36 [480]	5 (1–3)	A	30	Estático	Boltovskoy e Cataldo (2003)

Agente de controle	LC50 ou % Mortalidade	Exposição [pós- exposição] (h)	No. de concentrações testadas (Intervalo, ppm)	Tamanho (mm)	Temp. (°C)	Condições de Teste	Referência
5	1.28 ppm	36 [480]	5 (1–3)	A	25	Estático	Boltovskoy e Cataldo (2003)
5	2.43 ppm	36 [480]	5 (1–3)	A	20	Estático	Boltovskoy e Cataldo (2003)
5	0.88 ppm	48 [480]	5 (1–3)	A	30	Estático	Boltovskoy e Cataldo (2003)
5	1.38 ppm	48 [480]	5 (1–3)	A	25	Estático	Boltovskoy e Cataldo (2003)
5	2.52 ppm	48 [480]	5 (1–3)	A	20	Estático	Boltovskoy e Cataldo (2003)
5	0.90 ppm	720 [0]	5 (0.5–10)	A	20–22	Estático	Boltovskoy e Cataldo (2003)
5	0.71 ppm	264 [0]	5 (0.5–10)	L	20–22	Estático	Boltovskoy e Cataldo (2003)
5	34.9 ppm	48 [24–264]	5 (1–30)	A (15–25)	15	Estático	Cataldo et al. (2003)
5	1.3 ppm	48 [24–264]	5 (1–30)	A (15–25)	20	Estático	Cataldo et al. (2003)
5	1.2 ppm	48 [24–264]	5 (1–30)	A (15–25)	25	Estático	Cataldo et al. (2003)
6	%: 41.75	12 [120]	1 (2.3)	A (5–35)	22.5–23.5	FT	Boltovskoy e Cataldo (2003)
6	%: 41.45	24 [120]	1 (2.3)	A (5–35)	22.5–23.5	FT	Boltovskoy e Cataldo (2003)
6	%: 62.15	36 [120]	1 (2.3)	A (5–35)	22.5–23.5	FT	Boltovskoy e Cataldo (2003)
?	%: 92.85	48 [120]	1 (2.3)	A (5–35)	22.5–23.5	FT	Boltovskoy e Cataldo (2003)
6	%: 92.05	72 [120]	1 (2.3)	A (5–35)	22.5–23.5	FT	Boltovskoy e Cataldo (2003)
6	%: 63	24 [168]	1 (2.5)	A (6-43)	24–25	FT	Boltovskoy et al. (2005)
6	%: 94	48 [168]	1 (2.5)	A (6–43)	24–25	FT	Boltovskoy et al. (2005)
6	%: 99	72 [168]	1 (2.5)	A (6–43)	24–25	FT	Boltovskoy et al. (2005)
7	7.185 ppm	24 [0]	5 (5–75.5)	L	ND	Estático	Darrigran et al. (2001)
8	0.88 ppm	720 [0]	4 (0.5–20)	A	20–22	Estático	Boltovskoy e Cataldo (2003)

Agente de controle	LC50 ou % Mortalidade	Exposição [pós- exposição] (h)	No. de concentrações testadas (Intervalo, ppm)	Tamanho (mm)	Temp. (°C)	Condições de Teste	Referência
8	1.51 ppm	264 [0]	4 (0.5–10)	L	20–22	Estático	Boltovskoy e Cataldo (2003)
9	1313.3 ppm	6 [48]	1 (90)	A (15–25)	25	FT	Calazans et al. (2013)
9	270.9 ppm	48 [48]	11 (12–1000)	A (15–25)	25	Estático	Calazans et al. (2013)
10	1439.0 ppm	48 [48]	8 (10–10000)	A (15–25)	25	Estático	Calazans et al. (2013)
11	8303.1 ppm	6 [48]	4 (90–1000)	A (15–25)	25	FT	Calazans et al. (2013)
11	2536.9 ppm	48 [48]	8 (12–6000)	A (15–25)	25	Estático	Calazans et al. (2013)
12	45.49 ppm	48 [0]	6 (0.05–500)	A (21–26)	23–27	Estático	Montresor et al. (2013)
12	13.69 ppm	72 [0]	6 (0.05–500)	A (21–26)	23–27	Estático	Montresor et al. (2013)
12	11.10 ppm	96 [0]	6 (0.05–500)	A (21–26)	23–27	Estático	Montresor et al. (2013)
12 ^a	%: 99	8760 [0]	1 (1)	A	18–26	FT	Netto (2011)
13	138.54 ppm	24 [0]	ND	L	21.8–23.7	Estático	Pereyra et al. (2011)
14	160.21 ppm	24 [0]	ND	L	21.8–23.7	Estático	Pereyra et al. (2011)
15	983.27 ppm	168 [0]	ND	A (13)	21.8–23.7	Estático	Pereyra et al. (2011)
15	309.92 ppm	168 [0]	ND	A (13)	21.8–23.7	Estático	Pereyra et al. (2011)
15	160.1 ppm	168 [0]	ND	A (13)	21.8–23.7	Estático	Pereyra et al. (2011)
15	1273.73 ppm	168 [0]	ND	A (19)	21.8–23.7	Estático	Pereyra et al. (2011)
15	442.14 ppm	168 [0]	ND	A (19)	21.8–23.7	Estático	Pereyra et al. (2011)
15	283.4 ppm	168 [0]	ND	A (19)	21.8–23.7	Estático	Pereyra et al. (2011)
15	138.53 ppm	24 [0]	ND	L	21.8–23.7	Estático	Pereyra et al. (2011)

Agente de controle	LC50 ou % Mortalidade	Exposição [pós- exposição] (h)	No. de concentrações testadas (Intervalo, ppm)	Tamanho (mm)	Temp. (°C)	Condições de Teste	Referência
16	%: 90	240 [0]	1 (2000)	A	15–22	Estático	Angonesi et al. (2008)
16	%: 92	240 [0]	1 (4000)	A	15–22	Estático	Angonesi et al. (2008)
16	%: 100	240 [0]	1 (6000)	A	15–22	Estático	Angonesi et al. (2008)
6	%: 100	240 [0]	1 (8000)	A	15–22	Estático	Angonesi et al. (2008)
.6	%: 100	240 [0]	1 (12000)	A	15–22	Estático	Angonesi et al. (2008)
.6	8336.7 ppm	48 [48]	8 (1000–20000)	A (15–25)	25	Estático	Calazans et al. (2013)
7	376.0 ppm	48 [48]	9 (1–2000)	A (15–25)	25	Estático	Calazans et al. (2013)
7 ^a	%: 86	8760 [0]	1 (1)	A	18–26	FT	Netto (2011)
8	344.95 ppm	48 [0]	7 (40–800)	A (21–26)	23–27	Estático	Montresor et al. (2013)
8	113.14 ppm	72 [0]	7 (40–800)	A (21–26)	23–27	Estático	Montresor et al. (2013)
.8	88.51 ppm	96 [0]	7 (40–800)	A (21–26)	23–27	Estático	Montresor et al. (2013)
8 ^a	%: 99	8760 [0]	ND	A	18–26	FT	Netto (2011)
9	%: 2	24 [168]	1 (0.5)	A (6-43)	24–25	FT	Boltovskoy et al. (2005)
9	%: 1	48 [168]	1 (0.5)	A (6-43)	24–25	FT	Boltovskoy et al. (2005)
9	%: 0.2	72 [168]	1 (0.5)	A (6-43)	24–25	FT	Boltovskoy et al. (2005)
9	663.6 ppm	48 [48]	4 (10–1000)	A (15–25)	25	Estático	Calazans et al. (2013)
9	%: 100	720–2160 [0]	1 (1)	A	ND	FT	Cepero (2003)
9	300 ppm: 6 d	144 [0]	9 (0.2–400)	A	~ 20	FT	Morton et al. (1976)
.9	400 ppm: 6 d	144 [0]	9 (0.2–400)	A	~ 20	FT	Morton et al. (1976)

Agente de controle	LC50 ou % Mortalidade	Exposição [pós- exposição] (h)	No. de concentrações testadas (Intervalo, ppm)	Tamanho (mm)	Temp. (°C)	Condições de Teste	Referência
19	200 ppm: 6.5 d	156 [0]	9 (0.2–400)	A	~ 20	FT	Morton et al. (1976)
19	1 ppm: 15.3 d	367.2 [0]	9 (0.2–400)	A	~ 20	FT	Morton et al. (1976)
9	0.8 ppm: 23 d	552 [0]	9 (0.2–400)	A	~ 20	FT	Morton et al. (1976)
20	46.54 ppm	24 [0]	5 (5–80)	A (21–26)	23–27	Estático	Montresor et al. (2013)
20	19.84 ppm	48 [0]	5 (5–80)	A (21–26)	23–27	Estático	Montresor et al. (2013)
20	14.29 ppm	72 [0]	5 (5–80)	A (21–26)	23–27	Estático	Montresor et al. (2013)
20	11.53 ppm	96 [0]	5 (5–80)	A (21–26)	23–27	Estático	Montresor et al. (2013)
21	368.2 ppm	48 [48]	6 (10–2000)	A (15–25)	25	Estático	Calazans et al. (2013)
22	0.58 ppm	24 [0]	5 (5–80)	A (21–26)	23–27	Estático	Montresor et al. (2013)
22	0.35 ppm	48 [0]	5 (5–80)	A (21–26)	23–27	Estático	Montresor et al. (2013)
22	0.29 ppm	72 [0]	5 (5–80)	A (21–26)	23–27	Estático	Montresor et al. (2013)
22	0.25 ppm	96 [0]	5 (5–80)	A (21–26)	23–27	Estático	Montresor et al. (2013)
23	%: 100	720–2160 [0]	1 (1)	A	ND	FT	Cepero (2003)
24	%: 100	720–2160 [0]	1 (1 ppm de Cu ²⁺)	A	ND	FT	Cepero (2003)
24	%: 100	2160 [0]	3 (0.25–1 ppm de Cu2+)	A	ND	FT	Cepero (2003)

ND sem dados, A (adultos), L (larvas), L, FT através de fluxo.

8 AÇÕES DE PREVENÇÃO, MONITORAMENTO E CONTROLE

A seguir são apresentadas ações de prevenção, monitoramento e controle realizadas por diversos atores da sociedade, envolvidos com a problemática da invasão do mexilhão-dourado..

8.1 OUTROS PAÍSES

Nos Estados Unidos da América, por meio de uma força tarefa nacional (*Aquatic Nuisance Species Task Force*), conselhos regionais atuaram na elaboração de planos de manejo do mexilhão-zebra para estabelecer ações em âmbito estadual e interestadual, de forma descentralizada, com o envolvimento de diversas agências governamentais. Estes planos estão sobre uma coordenação federal, embora tenham forte influência estadual. O plano elaborado para a região denominada Western U.S. Waters (Western Regional Panel on Aquatic Nuisance Species, 2010), tem como foco ações preventivas sólidas, com base em ações de alta prioridade:

- Realizar inspeção obrigatória e descontaminação de águas infestadas imediatamente após a detecção;
- Desenvolver equipamentos de inspeção eficazes para monitorar embarcações, bem como protocolos e padrões para descontaminação;
 - Fortalecer e aplicar leis;
- Desenvolver um modelo padrão e estratégia para avaliação de risco para corpos de água;
- Expandir a capacidade de inspeção e capacidade de descontaminação para regiões não infestadas;
 - Desenvolver e implementar programas para interceptar equipamentos contaminados;
 - Detecção precoce de introduções;
 - Desenvolver protocolos padrões de campo para monitoramento e detecção precoce;
 - Aperfeiçoar métodos de análises de amostras;
 - Coordenar programas de monitoramento de detecção precoce;
 - Criar e manter um Fundo de Resposta Rápida para ações de erradicação e controle;
 - Constituir um banco de dados de notificação e de resposta rápida;
 - Treinamento de profissionais;

- Contenção e controle de populações existentes;
- Implementar ferramentas de controle confiáveis e econômicas;
- Desenvolver ferramentas de controle em sistemas abertos e fechados; e
- Educação.

No Canadá, planos de manejo regionais foram produzidos com base em esforços semelhantes para o controle de dreissenídeos (Province of British Columbia, 2015). Estes planos contemplam ações prevenção, análise de risco, detecção rápida, estratégias de educação e informação, capacitação técnica, pesquisa científica, controle, contenção e erradicação.

8.2 ÓRGÃOS FEDERAIS

O Ministério do Meio Ambiente criou por meio da Portaria nº 494, de 22 de dezembro de 2003, em caráter emergencial, a Força Tarefa Nacional para o Controle do Mexilhão-dourado, resultando no "Plano de Ação Emergencial para o Controle do Mexilhão-Dourado", o qual conclui que: i) o controle e contenção da dispersão do mexilhão-dourado devem-se constituir em tarefas de caráter permanente; ii) deve haver restrição nas atividades de tráfego hidroviário; iii) devem ser ampliadas as ações de fiscalização de embarcações de pequeno porte de pesca e recreio transportadas por via rodoviária; iv) maior controle no transporte de fauna e flora; e v) desaconselha a transposição de águas e aconselha um maior rigor na fiscalização em relação às navegações internacional e de cabotagem.

Participaram da Força Tarefa Nacional as seguintes instituições:

- · Ministério do Meio Ambiente MMA (Coordenador da FTN);
- · Estado-Maior da Armada EMA;
- · Diretoria de Portos e Costas DPC;
- · Agência Nacional de Águas ANA;
- · Agência Nacional de Vigilância Sanitária ANVISA;
- Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis -IBAMA;
- Secretaria de Meio Ambiente dos Governos dos Estados de Mato Grosso do Sul-MS
 e Rio Grande do Sul-RS
- Departamento Municipal de Águas e Esgotos de Porto Alegre-RS DMAE/RS;
- · Associação Brasileira das Empresas Geradoras de Energia Elétrica ABRAGE;

- · Itaipu Binacional;
- Furnas Centrais Elétricas S. A.

Em 2004, com a finalidade de subsidiar estudos e preencher lacunas do conhecimento sobre o processo de invasão do mexilhão-dourado e seus impactos, como desdobramento da Força Tarefa Nacionalo, o CNPq organizou uma rede de pesquisa, envolvendo (9) instituições: a Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS; a Universidade Estadual de Maringá – UEM; o Instituto de Estudos do Mar Almirante Paulo Moreira – IEAPM; a Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA Pantanal; a Universidade Federal de Mato Grosso – UFMT; a Universidade Federal do Paraná – UFPR; a Pontifícia Universidade Católica do Rio de Janeiro – PUCRJ; a Universidade Federal de São Carlos – UFSC; o Centro de Pesquisa e Gestão de Recursos Pesqueiros Continentais – CEPTA/IBAMA. A coordenação ficou a cargo do IEAPM e resultou em uma importante base de dados sobre biologia, prevenção, monitoramento e controle do mexilhão-dourado (Processo de nº 507675/ 2004), permitindo a integração de pesquisadores e troca de experiências.

Em 2009, A Comissão Nacional da Biodiversidade (CONABIO) aprovou a Estratégia Nacional sobre Espécies Exóticas Invasoras, conforme Resolução CONABIO nº 5/2009, a qual define diretrizes e ações prioritárias para a prevenção, detecção precoce e resposta rápida, controle, monitoramento e erradicação de espécies exóticas invasoras, orientando as diferentes esferas governamentais no trato da temática bioinvasão.

Em 2016, o MMA publicou o livro "Espécies Exóticas Invasoras de Águas Continentais no Brasil", o qual reconhece o mexilhão-dourado como espécie exótica invasora. Uma publicação composta de 13 capítulos, com dados sobre as espécies exóticas com potencial invasor já presentes no país, suas situações populacionais, características, origem, distribuição geográfica e outras, dos seguintes grupos taxonômicos. Esta publicação encontra-se disponível para download no endereço: www.mma.gov.br/publicacoes/biodiversidade/category/56-especies-exoticas-invasoras.

Ações de monitoramento foram realizadas pela Agência Nacional das Águas, que implantou um projeto de inspeção visual do mexilhão-dourado pela rede hidrométrica nacional, cujos dados parciais apresentados por Especialista em Recursos Hídricos da Agência Nacional de Águas Maria Leonor Baptista Esteves. As informações constam no website do MMA, no seguinte link: mma.gov.br/estruturas/174/_arquivos/174_05122008110517.pdf.

8.3 ÓRGÃOS ESTADUAIS

A Secretaria do Meio Ambiente do Rio Grande do Sul (SEMA-RS) e a Fundação de Proteção Ambiental (FEPAM) realizaram audiência pública para estabelecer parceria para combater o mexilhão-dourado no Rio dos Sinos em 2007, em convênio com o Comitê da Bacia Hidrográfica do Rio dos Sinos (COMITESINOS), a Universidade do Vale do Rio dos Sinos e o Instituto Martim Pescador, buscando estabelecer medidas de controle monitoramento (http://www.rs.gov.br/conteudo/151689/sema-e-fepam-formam-parceria-para-combater-mexilhaodourado-n). A FEPAM participou de um grupo de trabalho para prevenir a dispersão do mexilhãodourado no rio dos Sinos, em integração com órgãos municipais, discutindo ações de prevenção e controle para esta Bacia. Em 2003, o governo do estado do Paraná lançou campanha de prevenção do mexilhão-dourado, com distribuição de material informativo, em parceria com empresas do setor elétrico. A FEPAM, integrante da Força Tarefa Nacional de combate ao Mexilhão-Dourado, realizou o monitoramento de L. fortunei em 58 estações de amostragem ao longo de rios e barragens da região hidrográfica do Guaíba, cujos dados parciais constam em Terra et al. (2007), permitindo novos registros no Rio Taquari.

O Estado do Rio Grande do Sul publicou a Portaria SEMA nº 79 de 31 de outubro de 2013, na qual consta a primeira lista de espécies invasoras do Rio Grande do Sul, a qual abrange espécies da flora, vertebrados terrestres, peixes, invertebrados e algas, reconhecendo o mexilhão-dourado com espécie exótica invasora presente no estado, enquadrada categoria 1, que abrange espécies que têm proibido seu transporte, criação, soltura ou translocação, cultivo, propagação (por qualquer forma de reprodução), comércio, doação ou aquisição intencional sob qualquer forma. Também foi reconhecido na lista de espécies invasoras do estado do Paraná (Portaria IAP nº 74, de 19 de abril de 2007). Posteriormente, a Portaria IAP nº 59, de 15 de abril de 2015 novamente cita o mexilhão-dourado dentre as espécies invasoras presentes no Paraná, enquadrando-o na mesma categoria adotada pelo Rio Grande do Sul (categoria 1). Já a Resolução Consema nº 8, de 14 de setembro de 2012, que institui a lista de espécies invasoras do estado de Santa Catarina, não cita o mexilhão-dourado entre as espécies invasoras reconhecidas para este estado. A deliberação CONSEMA nº 30 de 2011, reconhece o mexilhão-dourado como espécie exótica invasora no estado de São Paulo.

Em Santa Catarina, a Gerência de Licenciamento de Empreendimentos em Recursos Hídricos presidiu reunião para tratar do controle do mexilhão-dourado no estado, visando integrar outras instituições estaduais para conscientizar os setores produtivos envolvidos, criar barreiras sanitárias, dar orientações para o controle de dispersão por embarcações e apetrechos de pesca e pesquisa. O Estado do Paraná e Santa Catarina tem avançado na questão das espécies invasoras e dispõem de um plano de ações de manejo. Atenta ao tema, em Santa Catarina foi implantado o Programa Estadual de

Espécies Exóticas Invasoras por meio da Portaria nº 116/2016 da Fundação do Meio Ambiente. Dentre suas linhas de ação constam: a) Prevenção, detecção precoce; b) Erradicação, controle e monitoramento: especialmente direcionado para as Unidades de Conservação da natureza; c) Capacitação técnica para: prevenção, ações de erradicação e controle; d) Informação pública: sistemas de informação, educação e informação pública; e) Normas infralegais e políticas públicas: regulamentações, políticas públicas; proposição e revisão de marcos legais. Dentro dessas linhas de ações estão sendo planejadas ações direcionadas ao mexilhão-dourado. No âmbito do Programa Estadual de Santa Catarina de Espécies Exóticas Invasoras, dentro da linha de ação Informação Pública, foi publicado o livro "Lista Comentada de Espécies Exóticas Invasoras no Estado de Santa Catarina" que consta informações sobre mexilhão-dourado. A versão digital está disponível em http://www.fatma.sc.gov.br/conteudo/especies-exoticas-invasoras.

8.4 ÓRGÃOS MUNICIPAIS

Em integração com SEMA/RS, órgãos municipais, em São Leopoldo (Semae) e Novo Hamburgo (Comusa), bem como estaduais Corsan e Comando Ambiental da Brigada Militar se reuniram para discutir ações de conscientização, controle do mexilhão-dourado na bacia do Rio dos Sinos. Em saída de monitoramento ambiental no ano de 2014, a Secretaria Municipal de Meio Ambiente e Pesca (SEMMAP) do município de Imbé (RS), e o Ceclimar/UFRGS realizaram vistorias do mexilhão-dourado no rio Tramandaí.

8.5 COMITÊS DE BACIA HIDROGRÁFICA

O Comitê de Gerenciamento da Bacia Hidrográfica do Rio dos Sinos (COMITESINOS) atua em conjunto com órgãos estaduais e municipais na busca de estratégias para o controle e monitoramento do Rio dos Sinos, um dos tributários do Lago Guaíba, no Rio Grande do Sul. Discussões sobre a problemática do mexilhão-dourado também foram estabelecidas no Comitê de Gerenciamento da Bacia Hidrográfica do Rio Ibicuí.

8.6 RESERVATÓRIOS E GERAÇÃO DE ENERGIA

Em geral, as usinas hidrelétricas contaminadas realizam manutenção forçada 3 dias/ano para remoção de incrustações do mexilhão-dourado (Informação Obtida por meio da Consulta Pública). Os custos são elevados o que tem levado a mobilização do setor elétrico para atenuar os problemas decorrentes do mexilhão-dourado. A Associação Brasileira das Empresas Geradoras de Energia Elétrica – ABRAGE, Itaipu Binacional e Furnas Centrais Elétricas S. A. atuaram como instituições

integrantes da Força Tarefa Nacional, a qual estabeleceu as primeiras ações prioritárias de prevenção, monitoramento e controle do mexilhão-dourado no Brasil.

Mesmo sem registros do mexilhão-dourado em seus reservatórios, FURNAS foi pioneira em atividades de prevenção, como relatou Fillipo et al. (2012), descrevendo ações realizadas nos Estados de São Paulo, Minas Gerais, Goiás, Mato Grosso e Mato Grosso do Sul. Em 2012, colaborou com a divulgação do conhecimento, por meio do livro "Moluscos Límnicos Invasores no Brasil", no qual constam dados de distribuição das espécies, dados biológicos e ecológicos, métodos de prevenção, monitoramento e controle, bem como bases para o manejo integrado.

Em parceria com o Governo do estado do Paraná, com o Lactec – Instituto de Tecnologia para o Desenvolvimento, de Curitiba, e UFPR – Universidade Federal do Paraná, em 2003, as empresas Copel – Companhia Paranaense de Energia, Itaipu Binacional, Duke Energy – Geração Paranapanema e Tractebel Energia, implantaram campanha de prevenção do mexilhão-dourado no Paraná (Ecoviagem, 2003).

A CESP, visando o controle do mexilhão-dourado no Alto Rio Paraná desenvolveu amplo trabalho de conscientização e de técnicas de controle.

Em 2009, a AES Tietê financiou e distribuiu a segunda edição do livro "Introdução à biologia das invasões. O mexilhão-dourado na América do Sul: biologia, dispersão, impacto, prevenção e controle" de autoria de Gustavo Darrigran & Cristina Damborenea, no qual constam experiências dados biológicos, de distribuição e bases para a prevenção, controle e análise de risco. Além disso, realizou distribuição de material informativo quanto ao mexilhão-dourado no Estado de São Paulo.

Por meio de P&D financiado pela CEMIG, surgiu o Centro de Bioengenharia de Espécies invasoras de Hidrelétricas (CBEIH). Segundo o website da Instituição (cbeih.org), vários projetos de pesquisa foram realizados no sentido de modelar a distribuição do mexilhão-dourado para avaliar risco de dispersão no Brasil, assim como também foi criada uma base de dados colaborativa para a atualização imediata de novas ocorrências, lançamento de boletins de alerta de novos registros e subsidiar pesquisas interinstitucionais.

A CEMIG realiza o Programa de Monitoramento Limnológico, Qualidade da água e controle da espécie exótica invasora mexilhão-dourado, em São Simão, em parceria com Cbeih, o qual realiza monitoramento pela tríade laboratorial descrita acima. Outras empresas como Itaipu Binacional (Takeda et al., 2012), AES Tietê (Pereira et al., 2012), e FURNAS (De Fillipo, 2012) realizaram monitoramento do mexilhão-dourado em seus reservatórios utilizando substratos artificiais, exame de estruturas, e quantificação de larvas por meio de microscopia ótica. A COPEL tem utilizado método de detecção de larvas com base em biologia molecular e inspeções com robôs.

Desde 2001, Itaipu monitora larvas e adultos no reservatório e na unidade geradora de energia, utilizando a remoção mecânica, o aumento de vazão em encanamentos, tintas anti-incrustantes, entre outros (itaipu.gov.br/meioambiente/mexilhao-dourado).

8.7 CAPTAÇÃO, TRATAMENTO E DISTRIBUIÇÃO DE ÁGUA

O Departamento Municipal de Águas e Esgotos de Porto Alegre-RS – DMAE/RS atuou como instituição integrante da Força Tarefa Nacional, a qual estabeleceu as primeiras ações prioritárias de prevenção, monitoramento e controle do mexilhão-dourado no Brasil.

Na Bacia do Rio dos Sinos, no Rio Grande do Sul, agências de tratamento e distribuição de água (SEMAE e COMUSA) se uniram para buscar estabelecer estratégicas de controle e monitoramento no Rio dos Sinos, nos municípios de Novo Hamburgo e São Leopoldo. A Sanepar de Foz do Iguaçu fez o monitoramento e limpeza do sistema de captação de água, no lago de Itaipu, por meio de mergulhadores e filmagens subaquáticas no sistema de captação de água. A empresa realiza limpeza mecânica do conjunto de tubulação que capta água do lago de Itaipu para retirada do molusco (tribunapr.com.br, 2017). Processos semelhantes foram realizados pelo DMAE, em Porto Alegre e CORSAN, nos demais municípios do Rio Grande do Sul, resultando na retirada de 300kg de mexilhão-dourado numa única parada de manutenção, de acordo com noticiários locais.

De acordo com Bendati et al (2004), o Departamento Municipal de Águas e Esgotos de Porto Alegre (DMAE), implantou as seguintes ações para o controle do mexilhão-dourado: utilização de 0,5 e 2 mg/L de sulfato de cobre na tubulação de água bruta, para a remoção de incrustação de adultos e controle de larvas; remoção mecânica com jato de alta pressão com menor efetividade; monitoramento de formas larvais. Segundo os autores o consumo de sulfato de cobre entre 2000 a 2003, foi de 187 toneladas, atingindo o custo de R\$ 615.230,00 (valores de março de 2003). Já o custo de mergulhadores entre setembro de 2001 e dezembro de 2002 foi da ordem de R\$ 22.166,00.

8.8 AQUICULTURA

Para o setor da aquicultura, os custos decorrentes do impacto do mexilhão-dourado sobre o sistema de cultivo são da ordem de R\$3.000,00 a R\$4.000,00 por 1.000 kg de peixes mortos ou diminuição de rendimento final do peixe produzido (informação obtida por meio da Consulta pública).

Ações extensionistas associadas à pesquisa científica foram desenvolvidas em projeto de financiado pela FAPESP (n. 14/12553-7), intitulado "Padrões ambientais associados ao desenvolvimento do mexilhão-dourado, *L. fortunei*, em áreas com piscicultura em tanques-rede", desenvolvido no reservatório Canoas II, rio Paranapanema, divisa entre os estados de São Paulo e

Paraná. O projeto visou subsidiar ações de prevenção, controle e mitigação dos impactos negativos da espécie invasora sobre as pisciculturas. Foi coordenado pela Agência Paulista de Tecnologia dos Agronegócios (APTA, SAA/SP), com participação do Polo Regional do Médio Paranapanema, da Embrapa Pantanal, do Centro de Isótopos Estáveis Ambientais da UNESP de Botucatu, do Núcleo de Pesquisa em Ficologia, do Instituto Botânico, da Unidade Laboratorial de Referência em Limnologia do Instituto de Pesca e do Departamento de Ciências Exatas da UNESP de Jaboticabal. Foram realizados por dois anos, estabelecendo relações entre variáveis limnológicas da água, sedimento, taxas de sedimentação do material em suspensão, disponibilidade de nutrientes, comunidade fitoplanctônica e o desenvolvimento do mexilhão-dourado, o qual também foi investigado em termos de bioindicação de resíduos da piscicultura, por meio dos isótopos estáveis de carbono e nitrogênio.

A Fepagro Aquicultura e Pesca, em Terra de Areia, no Rio Grande do Sul, realizou a partir de 2014, o monitoramento do mexilhão-dourado nas margens da Lagoa dos Quadros. Amostradores foram instalados nas margens da lagoa, em tanques de cultivo, unidades experimentais e na caixa d'água do Centro de Pesquisa da Fepagro.

8.9 PESCA E NAVEGAÇÃO

Fillipo et al. (2012), documentou as ações preventivas pioneiras realizadas por FURNAS junto ao setor pesqueiro, com a distribuição de material informativo, entrevistas em TV e rádio, assim como demonstrações de procedimentos de limpeza de barcos e redes de pescas. Estas ações foram implementadas durante importantes festivais de pesca realizados em Cáceres, no Mato Grosso, assim como intervenções nos Estados de São Paulo, Minas Gerais, Goiás, Mato Grosso e Mato Grosso do Sul. Apresentações e folhetos informativos produzidos e distribuídos, ainda podem ser visualizados no site da empresa (www.furnas.com.br/frmMAAcoesMexilhaoDourado.aspx), nos quais constam orientações quanto a desinfecção de apetrechos de pesca, remo, âncoras, cascos de barcos e tanques de transporte de peixes e iscas em barcos. Além disso, também são ressaltados os cuidados com o descarte de água dos tanques em outros locais. A implementação de procedimentos de controle e prevenção, em apetrechos de pesca, reservatórios de água e cascos de embarcações resultaram de iniciativas do setor elétrico com o apoio da comunidade científica nos Estados de São Paulo, Minas Gerais, Goiás, Mato Grosso e Mato Grosso do Sul por meio de iniciativas de educação ambiental executadas por FURNAS, CESP e CEMIG (Fillipo et al., 2012).

8.10 HIDROVIAS

As mesmas ações implantadas por FURNAS, descritas acima, contribuíram muito para a conscientização e prevenção em hidrovias do Mato Grosso, onde barcos de pesca entre outros,

apresentam ampla circulação durantes festivais do setor pesqueiro. Estas ações foram integradas a rede de ensino, envolvendo secretários de educação, educadores, bem como também membros da Secretária do Meio Ambiente do Mato Grosso. O grupo de FURNAS atuou em parcerias em outras campanhas realizadas pela CESP, a qual realizou conscientização de comunidades ribeirinhas com a utilização de um barco escola e um ônibus-escola (http://www.cesp.com.br/portalcesp/portal.nsf/V03.02/index_erroacesso?OpenDocument).

8.11 INSTITUIÇÕES DE PESQUISA

Como resultado das ações do MMA, em parceria com o CNPQ/CT-HIDRO foi implantado o projeto de pesquisa "Programa de Pesquisa para Controle do Mexilhão-Dourado nas Águas Jurisdicionais (MCT/CNPq) – Valor: R\$ 1.000.000,00", o qual foi coordenado entre 2005 e 2008, pelo Instituto de Estudos do Mar Almirante Paulo Moreira.

O referido projeto envolvia cinco subprojetos listados abaixo:

SUB-PROJETO 1: Distribuição, estrutura populacional, crescimento e mortalidade do mexilhão dourado no Brasil (Coordenação PUC/RS)

SUB-PROJETO 2: Controle Químico e Físico do mexilhão dourado (Coordenação IEAPM)

SUB-PROJETO 3: Tintas antiincrustantes no controle do mexilhão-dourado (Coordenação: IEAPM)

SUB-PROJETO 4: Avaliação de Risco de re-introdução do mexilhão-dourado (Coordenação: IEAPM)

SUB-PROJETO 5: Identificação de genes e estudo de perfis de expressão gênica em *L. fortunei* (Coordenação: UFRJ).

O Programa de Pesquisa para Controle do Mexilhão-Dourado nas Águas Jurisdicionais foi um marco na pesquisa sobre esta espécie invasora, resultando em inúmeras dissertações e teses de doutorado, artigos e capítulos de livros. A instituição se tornou uma referência no assunto e formou uma escola de novos pesquisadores em parceria com as demais instituições coordenadoras de subprojetos, disseminando conhecimento, integrando experiências e discutindo a problemática da bioinvasão em diversos eventos.

O Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH) foi criado a partir do P&D ANEEL GT-343, atuando em monitoramento, bioengenharia e modelagem ambiental. O monitoramento ambiental tem como meta a detecção rápida de chegada de um invasor, visando o estabelecimento de ações de controle e erradicação com maior eficiência. O Programa de Detecção

Rápida e Resposta Imediata (DRRI) foi desenvolvido por este Instituto, com base no programa de Early Detection do Bureau of Reclamation, Instituto do Governo Norte-Americano, tendo como base a integração de três métodos de detecção, uma tríade. As amostragens são realizadas em áreas prioritárias indicadas por modelagem ambiental. Os resultados são integrados a um sistema on-line de informação, com módulos de visualização georreferenciada e sistemas de alerta para a tomada imediata de decisões. Atua em rede de colaboração com o Bureau of Reclamation (entidade vinculada ao Ministério do Interior dos EUA), o Departamento de Engenharia Mecânica e Aeroespacial da Universidade da Califórnia (EUA), e o Centro de Biologia Marítima da USP – CEBIMa. Cabe destacar dentre as ações deste centro, a detecção do primeiro registro no Rio São Francisco e importantes estudos de modelagem.

O Laboratório de Estudos de L. fortunei (LELf) se encontra instalado no Centro de Pesquisas Hidráulicas e Recursos Hídricos da Universidade Federal de Minas Gerais (CPH / UFMG). Este laboratório foi resultado da parceria entre o CPH/UFMG e o Departamento de Zoologia do ICB/ UFMG, sendo construído especificamente para o trabalho com o mexilhão-dourado em condições de biossegurança. Em 2010, a Rede de pesquisa REALf (Rede de Estudos Avançados de L. fortunei) foi criada e envolve três Universidades Públicas, a Universidade Federal de Minas Gerais (UFMG), a Universidade Federal de Ouro Preto (UFOP) e a Universidade Federal do Pará (UFPA). A Rede é coordenada por pesquisadores do Departamento de Zoologia do ICB/UFMG, daCPH/UFMG Escola de Engenharia e do Departamento Engenharia da UFOP. Além destas instituições a REALf conta com a colaboração de outros centros de pesquisas como Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), o CPqRR/Fiocruz, e Facultad de Ciências Naturales y Museo de la Universidad Nacional de La Plata (UNLP)-Argentina. Os trabalhos propostos pela REALf, possuem uma forte interdependência e são desenvolvidos em um ambiente multidisciplinar onde diversas áreas do conhecimento se interagem. Esta rede de pesquisa buscou e vem buscando avanços no conhecimento sobre o mexilhão-dourado e o desenvolvimento de soluções tecnológicas com enfoque na redução de custos energéticos e minimização dos impactos ambientais causados pela introdução do mexilhão. A Rede, que visa à integração de pesquisadores do Brasil e de outros países, tem ainda como objetivo a formação de recursos humanos especializados e capacitados e que possam auxiliar a consolidar a nossa iniciativa.

A Universidade Federal do Rio Grande do Sul (UFRGS) por meio da Fundação Luiz Englert (FLE), o Centro de Ecologia e o O Laboratório de Materiais Cerâmicos (LACER) do Departamento de Materiais (DEMAT) da Escola de Engenharia da Universidade Federal do Rio Grande do Sul (UFRGS), desenvolveu uma série de projetos sobre biologia da espécie, tolerância ambiental, monitoramento, tintas antiincrustantes, controle biológico, controle físico utilizando ultrassom e

radiação ultravioleta e ecotoxicologia, em parceira com AES Tietê, CEEE, Tractebel, ENERPEIXE e FURNAS Centrais Hidrelétricas, com equipe multidisciplinar de Biólogos, Engenheiros de Materiais, Engenheiros Químicos, entre outros. Os projetos resultaram numa série de artigos, dissertações e teses. O marco deste grupo de pesquisa foi a publicação do livro "Moluscos Límnicos Invasores no Brasil", no qual constam dados de distribuição das espécies, dados biológicos e ecológicos, métodos de prevenção, monitoramento e controle, bem como bases para o manejo integrado. O livro foi financiado por FURNAS e reuniu pesquisadores e resultados de projetos do grupo de pesquisa da UFRGS, bem como de pesquisadores de várias instituições que trabalharam no projeto do IEAPM, como o NUPÉLIA, EMBRAPA, UFMT, de outros projetos realizados no LACTEC, ações realizadas pelo MMA, e também de contribuições internacionais de pesquisadores da Argentina e Japão.

No Mato Grosso, cabe ainda destacar a atuação da Universidade Federal do Mato Grosso (UFMT), as qual atuou em inúmeros projetos de pesquisa realizados com o IEAPM e UFRGS, dentre outros projetos realizados em suas próprias instituições, nos quais se envolveram em ações de prevenção, monitoramento e estudos ecológicos no Pantanal, resultando em teses, dissertações e artigos relevantes, as quais forneceram dados importantes da relação do mexilhão-dourado com a fauna bentônica em áreas úmidas. No Mato Grosso do Sul, a EMBRAPA-PANTANAL, atuou em conjunto com outras instituições em vários projetos de controle físico. Além disso, realizou importantes previsões de cenário por meio de modelagem de nicho, atuou em inúmeros projetos de pesquisa realizados com o IEAPM e UFRGS, dentre outros projetos realizados em suas próprias instituições, nos quais se envolveram em ações de prevenção, monitoramento, controle, resultando em teses, dissertações e artigos relevantes.

O Instituto de Tecnologia para o Desenvolvimento (Lactec) trabalha desde 2003 em conjunto com concessionárias de energia de todo o Brasil no controle e monitoramento de espécies exóticas invasoras. O Instituto realizou trabalhos constantes de monitoramento de reservatórios de cinco empresas de energia para evitar transtornos, como entupimentos das tubulações, filtros e trocadores de calor das usinas. Desde 2004, 18 usinas da Copel são monitoradas, nas quais foram estudados métodos de controle. O Lactec estabeleceu convênios com a Elejor, a Eletronorte, Tractebel e as paulistas Duke Energy e AES Tietê para estudos específicos relacionados às características de cada região. O Instituto realizou campanhas de educação ambiental, com materiais audiovisuais distribuídos nas regiões que ainda não foram afetadas e estudo pioneiro sobre análise de risco da dispersão do mexilhão-dourado no Brasil.

A Universidade Federal do Rio de Janeiro (UFRJ), atuou no Sub-Projeto 5 (Identificação de genes e estudo de perfis de expressão gênica em *L. fortunei* do Programa de Pesquisa para Controle do Mexilhão-Dourado nas Águas Jurisdicionais (MCT/CNPq), coordenado pelo IEAPM, resultando

em diversas teses na área do sub-projeto, contribuindo para a descrição do genoma mitocondrial do mexilhão-dourado. Recentemente assinou um contrato de projeto de pesquisa sobre com a CTG Brasil para criar um mexilhão-dourado geneticamente modificado (OGM), com a finalidade cruzar com indivíduos selvagens, produzindo descendentes estéreis, o que resultaria no declínio populacional. Cabe ressaltar que a liberação destes organismos requer avaliação ambiental, permitindo verificar o impacto a biodiversidade aquática. Além disso, segundo a Lei nº 7.679, de 23 de novembro de 1988 "na criação de espécies exóticas, é responsabilidade do aquicultor assegurar a contenção dos espécimes no âmbito do cativeiro, impedindo seu acesso às águas de drenagem de bacia hidrográfica brasileira". Além disso, "fica proibida a soltura, no ambiente natural, de organismos geneticamente modificados, cuja caracterização esteja em conformidade com os termos da legislação específica (Decreto nº 8.425, de 31 de março de 2015).

8.12 ORGANIZAÇÕES NÃO GOVERNAMENTAIS (ONGS).

A entidade da Sociedade Civil Organizada Ajatar (Amigos Jacuí-Taquari), desenvolve iniciativas com a finalidade de estruturar um laboratório que possa atuar na suaregião de abrangência, com pesquisa colaborativa, científica, singular, buscando o desenvolvimento de ações para obter resultados que contemplem as exigências da Ação Civil Pública do Ministério Público Federal de 2007 (Informação Obtida por meio da Consulta Pública).

9 OUTRAS APLICAÇÕES

Apesar de não ser uma espécie nativa da América do Sul, vários pesquisadores utilizaram o mexilhão-dourado em avaliações ambientais como bioindicador, devido a sua alta capacidade de filtração, para detectar a bioacumulação de metais tóxicos, a presença de enterobactérias e avaliar efeitos mutagênicos de poluentes.

9.1 BIOACUMULAÇÃO

Villar et al. (1999), avaliou as concentrações de cádmio (Cd), cobre (Cu) e zinco (Zn) no compartimento sedimentar e em tecidos do mexilhão-dourado, no trecho inferior do rio Paraná e na margem direita do estuário do Rio de la Plata. Os autores detectaram maiores teores em. *L. fortunei* no Rio Paraná, cabendo ressaltar os elevados teores de cobre (12,05 e 42,0 mg kg⁻¹ de Cu). Amostras do molusco foram analisadas quanto à presença de metais tóxicos mercúrio (Hg), cádmio (Cd) e chumbo (Pb), os quais foram detectados acima do limite da legislação (Agustini & Bartolomeu, 2010).

9.1.1 INDICADOR SANITÁRIO

Salmonella sp, bactéria entérica responsável por graves intoxicações alimentares, foi detectada em amostra de *L. fortunei* coletado junto a uma colônia de pescadores de São Miguel do Iguaçu-Paraná no Lago de Itaipu (Lang et al., 2013).

9.1.2 GENOTOXICIDADE

Testes cometa e de micronúcleo foram padronizados utilizando o *L. fortunei* como bioindicador. A exposição a uma amostra ambiental do Lago Guaíba, ao longo de sete dias confirmou a sensibilidade do mexilhão aos contaminantes da água, detectados em ambos os testes. Os resultados indicam o mexilhão-dourado como um potencial organismo bioindicador.

O potencial genotóxico de águas superficiais e sedimento, da bacia do Lago Guaíba, foi avaliado por Silveira et al. (2016), utilizando o ensaio cometa e a freqüência de micronúcleos nas células da hemolinfa do bivalve invasor *L. fortunei*. Foram verificados danos no DNA de amostras coletadas no Parque Estadual de Itapuã, consideradas como ponto de referência, na foz do arroio Dilúvio e no lago Guaíba.

10 CONSIDERAÇÕES FINAIS

Com base no diagnóstico apresentado, no histórico da invasão do mexilhão-dourado no Brasil, assim como em todos os esforços de agências governamentais, da iniciativa privada e de instituições de ensino, que resultaram em ações, projetos e publicações sobre o tema, podemos estabelecer as seguintes considerações e algumas recomendações.

O Brasil iniciou o desenvolvimento de ações inspiradas em modelos internacionais, com a formação da Força Tarefa Nacional, envolvendo uma série de atores da sociedade e comissões governamentais, que resultaram em eventos de integração, no estabelecimento de ações prioritárias e indução de projetos de pesquisa integrando instituições com expertise no tema.

Avanços científicos resultaram em uma série de dados que contribuíram o entendimento da invasão do mexilhão-dourado no Brasil e poderão subsidiar a prevenção e controle da espécie. O projeto coordenado pelo IEAPM financiado com recursos do CT-HIDRO/CNPQ, resultou numa série de dados consistentes sobre a biologia, ecologia, tolerância ambiental, controle químico, bem como sobre a genética do mexilhão-dourado. Outros projetos foram financiados por meio de Programas de Pesquisa & Desenvolvimento, com gerência da ANEEL e recursos de empresas do setor elétrico, visando pesquisa aplicada ao setor, geraram referências importantes como o livro "Moluscos Límnicos Invasores no Brasil". A previsão de cenários de ocorrência, com base em modelagem de nicho, foi realizada considerando todas as bacias brasileiras, revelando probalidades de ocorrência do mexilhão-dourado em todos os sistemas hidrográficos do Brasil. Apenas um caso de análise de risco,

com base em vetores, foi realizado em nível de pesquisa na bacia Iguaçu. Estudos desta natureza são de extrema importância para estimar probabilidades, riscos e perigos da dispersão desta espécie com base em seus vetores de dispersão. Ressaltando que cada bacia apresenta suas peculiaridades quanto aos vetores, em decorrência das distintas atividades humanas e usos dos recursos hídricos. O conhecimento dos riscos e dos vetores são fatores chaves para a definição de ações de prevenção e para o delineamento de programas de monitoramento, em bacias hidrográficas não invadidas, como as bacias do rio Amazonas e do Tocantins-Araguaia.

Em 2015, o **registro emergencial** de dois produtos químicos (MXD-100 e Diclorocianurato de Sódio), enquadrados como agrotóxicos, foi concedido para o controle do mexilhão-dourado restrito em sistemas de resfriamento de usinas hidrelétricas. Sendo proibida a utilização destes produtos em uso distinto daquele especificado no registro. Estes foram os únicos produtos químicos registrados, não sendo autorizado seu uso em ambiente natural.

Ações de prevenção foram protagonizadas por empresas do setor elétrico jundo ao setor, retardando de forma satisfatória a dispersão do mexilhão-dourado em direção ao norte e nordeste do país. Durante a consulta pública realizada para avaliar o conteúdo deste diagnóstico, a necessidade de dar continuidade aos programas de sensibilização e conscientização, especialmente nas bacias dos rios Amazonas, Tocatins Araguaia e São Francisco foi enfatizada, visando evitar a expansão geográfica do mexilhão-dourado no Brasil, atingindo estas bacias. A detecção rápida de novas introduções, para que se possa responder de forma imediata com ações assertivas de controle populacional e da dispersão em novas áreas, é extremamente necessária para a execução de ações efetivas de prevenção e controle. Programas de detecção e resposta rápida são elementos chaves em planos de prevenção e controle do mexilhão-zebra nos Estados Unidos da América, os quais deveem ser adotados no plano de prevenção e controle do mexilhão-dourado.

11 REFERÊNCIAS

Agudo-Padrón, A.I. & Porto Filho, E. 2013. The asiatic golden mussel, *Limnoperna fortunei* (Dunker, 1857), in the Upper Uruguay River Basin, Southern Brazil: current situation to one year of its regional discovery. FMCS Newsletter Ellipsaria 15(2): 33-35.

Almeida, H.C., Suszek, A.P.C., Mendonça, S.N.T.G.C. & Flauzino, R.S.C. 2006. Estudo do *Limnoperna fortunei* (mexilhão-dourado) como ingrediente na ração animal, através das características físico-químicas, microbiológicas e presença de mercúrio. Higiene Alimentar 20:61-65.

- Alvarenga, L.C.D.F., & Ricci, C.N. 1989. A new species of Mytilopsis Conrad, 1857, from Tocantins river, Tucuruí, Pará, Brazil:(Mollusca, Bivalvi, Dreissenidae). Memórias do Instituto Oswaldo Cruz 84:27-33.
- Alves, C.B.M. 2005. "Transposição do São Francisco: as incoerências e os peixes." Jornal do Biólogo-Informativo do Conselho Regional de Biologia-4ª Região 42: 6-7.
- Barbosa, D.B.P. 2009. Utilização do resíduo moído de mexilhão dourado (*Limnoperna fortunei* Dunker, 1857) como corretivo da acidez do solo e fonte de nutrientes para as plantas. Universidade Federal do Rio Grande do Sul, Dissertação de Mestrado.
- Belz, C.E. 2009. Análise de risco aplicada às bioinvasões. In: Darrigran, G.; Damborenea, C. (Eds). Introdução a Biologia das Invasões. O Mexilhão Dourado na América do Sul: biologia, dispersão, impacto, prevenção e controle. Cubo Editora, São Carlos, p. 229-245.
- Bendati, M.M.A., Suminski, M. & Colares, E.R.C. 2004. Avaliação da operação dos sistemas de abastecimento de água do DMAE (Porto Alegre, Brasil) em decorrência da presença do Limnoperna fortunei) In: I Congresso Interamericano de Saúde Ambiental, Porto Alegre (RS). Anais do I Congresso Interamericano de Saúde Ambiental. Porto Alegre: ABES/RS, 2004.
- Bergmann, C.P., Mansur, M.C.D. Pereira, D. Bergonci, P.E.A. Santos, C.P., Basegio, T., Vicenzi, J. Santos, S.C.A. 2010. Avaliação de materiais e revestimentos para o controle de incrustações do mexilhão-dourado *Limnoperna fortunei* (Dunker, 1857). Biotemas 23: 87-100.
- Bergmann, C.P., Mansur, M.C.D., Bergonci, P.E.A., Pereira, D., Santos, C.P., Basegio, T., Vicenzi, J.; Santos, S.C.A. 2010a. Seleção de materiais e revestimentos para auxiliar no controle da incrustação do mexilhão dourado na Usina Hidrelétrica de Ibitinga (SP, Brasil). Matéria 15:21-30.
- Bergonci, P.E.A., Santos, C.P.. Nehrke, M.V., Pereira, D. & Mansur, M. C.D. 2012. *Limnoperna fortunei* na bacia hidrográfica do Rio Jacuí e Lago Guaíba, Rio Grande do Sul. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos Límnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 193-196.
- Bergonci, P.E.A., Mansur, M.C.D., Pereira, D. & Santos, C.P. 2009. Population sampling of the golden mussel, *Limnoperna fortunei* (Dunker, 1857), based on artificial ceramic substrate. Biotemas 22 (3): 85-94.
- Bernhard, R. 2016. Monitoramento populacional de quelônios amazônicos. Quelônios Amazônicos, IBAMA, 79p.
- Boltovskoy, D. & Cataldo D. 2003. Estudios de evaluación, monitoreo y análisis de medidas de control de incrustaciones de moluscos bivalvos (*Limnoperna fortunei*) en las instalaciones de la central hidroeléctrica Itaipu. Infome final de trabajos. Central Hidroelectrica Itaipú. CHI, pp 1–281.
- Boltovskoy, D., Correa, N., Cataldo, D. & Sylvester, F. 2006. Dispersion and ecological impact of the invasive freshwater bivalve *Limnoperna fortunei* in the Rio de la Plata watershed and beyond. Biological Invasions 8 (4): 947-963.
- Boltovskoy, D. 2015. Distribution and colonization of *Limnoperna fortunei*: special traits of na odd mussel. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p.

- Boltovskoy, D., Morton, B., Correa, N., Cataldo, N. Damborenea, C., Penchaszadeh, P. E & Sylvester, F. 2015a. Reproductive output and seaseonality of *Limnoperna fortunei* In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p. 77-104
- Boltovskoy, D., Correa, N., Sylvester, F., & Cataldo, D. 2015b. Nutrient recycling, phytoplankton grazing, and associated impacts of *Limnoperna fortunei*. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p. 153-176
- Boltovskoy, D., Xu, M., & Nakano, D. 2015c. Impacts of *Limnoperna fortunei* on man-made structures and control strategies: general overview. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p. 375-394
- Bujes, C. S., Ely, I., & Verrastro, L. (2007). *Trachemys dorbigni* (Brazilian slider). Diet. Herpetological Review 38(3), 335.
- Burns, M. D., Garcia, A. M., Bemvenuti, M. A., Vieira, J. P., Marques, D. M. M., Moresco, A., & Condini, M. V. L. (2006). Bivalvia, Mytilidae, Limnoperna fortunei: distribution extension. Check List 2(2): 41-43.
- Callil, C.T., Gomes, L.T.A. & Soares, A.C.P.V. 2012. A gametogênese em *Limnoperna fortunei* (Dunker, 1857). I In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos Límnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 111-118.
- Campos, M.C.S., Lanzer, R. & Castro, P.T. 2012. Hydrological stress as a limiting factor of the invasion of *Limnoperna fortunei* (Dunker, 1857) in the Upper Paraná River (Brazil). Acta Limnologica Brasiliensia 24 (1): 64-82
- Campos, M.C.S., Peifer, D., & Castro, P.de T. 2016. The ShearStress importance on the spatial distribution pattern of the invader Limnoperna fortunei in the Upper Paraná River Basin. An assessment based on the Spatial Distribution Models. Biota Neotropica 16 (1), e20140164.
- Campos, M.C.S, Andrade, A.F.A. Kunzmann, B., Galvão, D.D., Silva, F.A., Cardoso, A.V., Carvalho, M.D.; Mota, H.R.; 2014. Modelling of the potential distribution of *Limnoperna fortunei* (Dunker, 1857) on a global scale. Aquat Invasions 9: 253–265
- Calazans, S.H.C & Fernandes, F.C. 2012. Microencapsulados. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle, Redes Editora, Porto Alegre, pp 299–302
- Calazans, S.H.C., Godoy Fernandes, L.V., Fernandes F.C. 2012. Outros compostos. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle, Redes Editora, Porto Alegre, p.311–315
- Calazans S.H.C, Americo, J.A., Fernandes, F.D., Aldridge, D.C., Rebelo, M.D. 2013. Assessment of toxicity of dissolved and microencapsulated biocides for control of the golden mussel *Limnoperna fortunei*. Mar Environ Res 91:104–108

- Capítoli, R.R., Colling L.A. & Bemvenuti, C.E. 2008. Cenários de distribuição do mexilhão-dourado *Limnoperna fortunei* (Mollusca - Bivalvia) sob distintas condições de salinidade no complexo Lagunar Patos-Mirim, RS - Brasil. Atlântica 30: 35-44.
- Caprari, J.J. 2006. Pinturas anti-incrustantes. In: Darrigran G, Damborenea C (eds) Bio-invasión del mejillón dorado en el continente americano. Editorial de la Universidad de La Plata, La Plata, pp 183–213
- Cardoso, C.C. 2014. Predadores ou dispersores? A relação do mexilhão-dourado *Limnoperna fortunei* (Dunker, 1857) (Bivalvia, Mytilidae) com quatro espécies de quelônios (Reptilia, Testudines) da planície costeira do Brasil subtropical. Fundação Universidade de Rio Grande. Dissertação de Mestrado.
- Carlton, J.T. & Ruiz, G.M. 2004. Vector science and integrated vector management in bioinvasion ecology: conceptual frame works. In.: Money, H. A.; McNeely, J.; Neville, L. E.; Schei, P. J. & Waage J. K. eds., Invasive Alien Species: A New Synthesis. Island Press, Covelo California.
- Cataldo, D. & Boltovskoy, D. 2000. Yearly reproductive activity of *Limnoperna fortunei* (Bivalvia) as inferred from of the occurrence of its larvae in the plankton of the lower Paraná river and the Río de la Plata estuary (Argentina). Aquatic Ecology 34: 307-317.
- Cataldo, D. 2015. Trophic relationships of *Limnoperna fortunei* with adult fishes. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p. 231-248
- Cataldo, D., Boltovskoy, D., Pose, M. 2003. Toxicity of chlorine and three non-oxidizing molluscicides to the invasive pest mussel Limnoperna fortunei. J Am Water Works Assoc 95:66–78
- Cataldo, D.H., Boltovskoy, D. Hermosa, J.L. & Canzi, C. 2005. Temperature-dependent rates of larval development in *Limnoperna fortunei* (Bivalvia: Mytilidae). Journal of Molluscan Studies 71 (1): 41-46.
- Cataldo, D.H., Sylvester, F. & Boltovskoy, D. 2012. Impact of the invasive golden mussel (*Limnoperna fortunei*) on phytoplankton and nutrient cycling. Aquatic Invasions 7 (1): 91-100.
- Clark, T.M., Flis, B.J. & Remold, S.K. 2004. pH tolerances and regulatory abilities of freshwater and euryhaline Aedine mosquito larvae. The Journal of Experimental Biology 207: 2297-2304.
- Claudi, R. & Mackie, G.L. 1994. Controlling zebra mussels at water treatment plant intakes. CRS Press, Boca Raton, 227p.
- Claudi, R. & Oliveira, M. D. 2015a. Alternative strategies for control of golden mussel (*L. fortunei*) in industrial facilities. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p. 463-476.
- Claudi, R. & Oliveira, M.D. 2015b. Chemical strategies for the control of golden mussel In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p. 417-442
- CONAMA. Resolução nº 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da República Federativa do Brasil, Brasília, DF, 23p.

- Coutinho, R., Souza, E.C.F., Haje, L. 2012. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos Límnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 223-227.
- Colares, E.R.C.; Suminski, M.; Bendati, M.M.A. 2002. Diagnóstico e controle do mexilhão-dourado, Limnoperna fortunei, em sistemas de tratamento de água em Porto Alegre (RS, Brasil). In: VI Simpósio Ítalo-Brasileiro de Engenharia Sanitária e Ambiental, Vitória (Brazil).
- Colgan, D.J., & Da Costa, P. 2013. Invasive and non-invasive lineages in Xenostrobus (Bivalvia: Mytilidae). Molluscan research 33(4), 272-280.
- Colling, L.A., Pinotti, R.M., & Bemvenuti, C.E. 2012. *Limnoperna fortunei* na Bacia da Lagoa dos Patos e Lagoa Mirim. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos Límnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre, 187-191.
- Collyer, W. 2007. Água de lastro, bioinvasão e resposta internacional. Jus Navigandi, n.1305, Disponível em: http://jus.com.br/artigos/9435>. Acesso em: 19 ago. 2013.
- Correa, N., Sardina, P., Perepelizin, P.V., Boltovskoy. 2015. L. fortunei colonies: structure, distribution and dynamics. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p.119-146
- Darrigran, G. & Pastorino, G. 1995. The recent introduction of a freshwater asiatic bivalve *Limnoperna fortunei* (Mytilidae) into South America. The Veliger 32(2): 171-175.
- Darrigran, G.; Armengol, M.F.L. 1998a. Distribucion, estructura y composicion de la malacofauna presentes en substrato duro de la costa argentina del Rio de La Plata. Gayana Zoología 62(1): 79-89.
- Darrigran G.; Damborenea C.; Penchaszadeh, P. 1998b. A case of hermaphroditism in the freshwater invading bivalve Limnoperna fortunei (Dunker, 1857) (Mytilidae) from its first American habitat (Río de la Plata, Argentina). Iberus 16(2):99-104.
- Darrigran, G.; Penchaszadeh, P.; Damborenea, C. 1999. The reproductive cycle of Limnoperna fortune (Dunker, 1857) (Mytilidae) from a Neotropical Temperate Locality. Journal of Shellfish Research, 18(2):361-365.
- Darrigran, G.; Ezcurra-de-Drago, I. 2000b. Distribución de *Limnoperna fortunei* (Dunker, 1857) (Mytilidae), en La Cuenca Del Plata, Region Neotropical. Medio Ambiente 13(2):75-79.
- Darrigran, G., 2002. Potential impact of filter-feeding invaders on temperate inland freshwater environments. Biological Invasions 4: 145-156.
- Darrigran, G.A., Maroñas, M.E. & Colautti, D.C. 2004. Air exposure as a control mechanism for the golden mussel, *Limnopema fortunei*, (Bivalvia: Mytilidae). J Freshw Ecol 19:461–464
- Darrigran, G. & M. C. Damborenea, 2009. Introdução a Biologia das Invasões O Mexilhão Dourado na América do Sul: Biologia, Dispersão, Impacto, Prevenção e Controle. Cubo Multimídia Ltda, São Carlos.
- Damborenea, C. & P. E. Penchaszadeh. 2009. Biologia reprodutiva do *Limnoperna fortunei*. In Darrigran, G. & M. C. Damborenea, 2009. Introdução a Biologia das Invasões O Mexilhão

- Dourado na América do Sul: Biologia, Dispersão, Impacto, Prevenção e Controle. Cubo Multimídia Ltda, São Carlos: 61-75.
- Darrigran, G. & M. C. Damborenea, 2011. Ecosystem engineering impacts of *Limnoperna fortunei* in South America. Zoological Science 28: 1-7.
- Darrigran, G., Damborenea, C. Drago, E.C., Drago, I.E.de, Paira, A. & F. Archuby, 2012b. Invasion process of *Limnoperna fortunei* (Bivalvia: Mytilidae): the case of Uruguay River and emissaries of the Esteros del Iberá Wetland, Argentina. Zoologia, 29 (6): 531-539.
- Darrigran, G.,F. Archuby, M.C.D. Mansur, 2012a. Manejo integrado de espécies invasoras. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos Límnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 383-388.
- Endo, N. & Nogata ,Y.2012. Método de detecção e quantificação de larvas do mexilhão-dourado *Limnoperna fortunei*, usando PCR quantitativo em tempo real. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle. Redes Editora, Porto Alegre, p. 149–153
- Ezcurra De Drago, I. & Oliveros, O.B. 2009. Desenvolvimento e ecología larval. In Darrigran, G. & M. C. Damborenea, 2009. Introdução a Biologia das Invasões O Mexilhão Dourado na América do Sul: Biologia, Dispersão, Impacto, Prevenção e Controle. Cubo Multimídia Ltda, São Carlos: 77-87.
- Fachini, A., Gazulha, V., & Pedroso, C.S. (2012). Os impactos do mexilhão-dourado sobre a comunidade planctônica. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle. Redes Editora, Porto Alegre, p. 255-261.
- Fernandes, F.C.; Leal Neto, A.C. 2009. Água de lastro como via de introdução de espécies a nível global. In: Darrigran, G.; Damborenea, C. Introdução a Biologia das Invasões. O Mexilhão Dourado na América do Sul: biologia, dispersão, impacto, prevenção e controle. Cubo Editora: São Carlos/SP. p 31-41.
- Fernandes, F.C, Mansur, M.C.D., Pereira, D., Fernandes, L.V.G., Campos, S.H.S., Damelon, O.M. 2012 Abordagem conceitual dos moluscos invasores nos ecossistemas límnicos. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle. Redes Editora, Porto Alegre, p. 19-23
- Fillipo, R. 2012., Formagio, P.S, Resende, F.A.B, Goulart, M.B. Ações de Eletrobrás-FURNAS na divulgação da campanha de controle do mexilhão-dourado. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org.) Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle. Redes Editora, Porto Alegre, p. 19-23
- Frau, D., Molina, F.R. & Mayora, G. Feeding selectivity of the invasive mussel *Limnoperna fortunei* (Dunker, 1857) on a natural phytoplankton assemblage: what really matters? Limnology (2016) 17: 47. https://doi.org/10.1007/s10201-015-0459-2

- Froes, C.L., Duarte, M.S.C., Custódio G. & Branco, J.R.T. 2012. Estudo do padrão de rompimento e da força de desligamento dos filamentos do bisso do *Limnoperna fortunei* (Dunker, 1857) em diferentes tipos de substratos. Revista Agrogeoambiental 4 (1): 33-40.
- Fujita, D.S., Takeda, A.M., Coutinho, R., & Fernandes, F.C. 2015. Influence of antifouling paint on freshwater invertebrates (Mytilidae, Chironomidae and Naididae): density, richness and composition. Brazilian Journal of Biology 75:70-78
- García, M., & Montalto, L. (2006). Los peces depredadores de *Limnoperna fortunei* en los ambientes colonizados. In Darrigran, G. & M. C. Damborenea, 2006. *Bio-invasión del mejillón dorado en el continente americano*, 111-127.
- Gazulha, V., Mansur, M.C.D., Cybis, L.., & Azevedo, S.M.F.O. 2012. Feeding behavior of the invasive bivalve *Limnoperna fortunei* (Dunker, 1857) under exposure to toxic cyanobacteria Microcystis aeruginosa. Brazilian Journal of Biology 72(1), 41-49.
- Gazulha, V., Mansur, M.C.D., Cybis, L.F., & Azevedo, S.M..O. (2012). Grazing impacts of the invasive bivalve *Limnoperna fortunei* (Dunker, 1857) on single-celled, colonial and filamentous cyanobacteria. Brazilian Journal of Biology 72(1), 33-39.
- Ghabooli, S., Zhan, A. Sardina, P. & MacIsaac, H.J. 2013. Genetic diversity in introduced golden mussel populations corresponds to vector activity. PloS one 8: 59328,
- Giglio, M.L., Mansur, M.C.D., Damborenea, C., Penchaszadeh P.E. & Darrigran, G. 2016. Reproductive pattern of the aggressive invader *Limnoperna fortunei* (Bivalvia, Mytilidae) in South America. Invertebrate Reproduction & Development 60:175-184.
- Hübel, I.; Stahnke, L.F.; Demenighi, J. da S.; Silva, J.A.; Amaral, R. M. G. 2009. Primeiro registro do molusco invasor *Limnoperna fortunei* (Dunker, 1857)(Mollusca, Mytilidae) para a Bacia Hidrográfica do Rio dos Sinos, Rio Grande do Sul, Brasil. Revista Brasileira de Zoociências 10:
- Ito, K. 2015 Distribution and spread of *Limnoperna fortunei* in Japan. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p. 321-332.
- Karatayev, A.Y., Boltovskoy, D., Burlakova, L.E. & Padilha, D.K. Parallels and constrasts between *Limnoperna fortunei* and species of Dreissena. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p.261-300.
- Katsuyama, I., Satuito, C.G, Maeda, T., Oonishi, M. & Kumagai, T. 2005. The effect of DC-pulse electric stimulus on the swimming behavior of larvae of the freshwater mussel *Limnoperna* fortunei in flowing water within a pipe. Sess Org 2:1–5
- Latini, A. O., Resende, D. C., Pombo, V. B., Coradin, L. 2016. Espécies exóticas invasoras de águas Continentais no Brasil. organizadores Brasília: MMA, 2016. 791p.
- Lopes, M. N.; Vieira, J. P. & Burns, M. D. M. 2009. Biofouling of the golden mussel *Limnoperna fortunei* (Dunker, 1857) over the Anomura crab *Aegla platensis* Schmitt, 1942. Pan-American Journal of Aquatic Sciences 4(2):222-225.
- Lopes, M & J. Vieira, 2012. Predadores potenciais para o controle do mexilhão-dourado. . In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V.,

- Bergonci P.EA. org. Moluscos Límnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 357-363.
- Mackie, G.L. & Claudi, R. Monitoring and Control of Macrofouling Mollusks in Fresh Water Systems. CRC Press, New York.
- Mansur, M.C.D. & Veitenheimer, I.L. 1975. Nova espécie de *Eupera* (Bivalvia: Sphaeriidae) e primeiras contribuições anatômicas para o gênero. Iheringia Série Zoologia 47: 23–46.
- Macedo, J.A.B. 2017. O estado da arte: Dicloroisocianurato de sódio pastilhas x Dicloroisocianurato de sódio pastilhas efervescentes para desinfecção de água em caminhões tanques. Revinter 10:20-45.
- Macêdo, J.A.B., Andrade, N.J., Chaves, J.B.P., Araújo, J.M.A., Coelho Silva, M.T. & Jordão, C.P. 1999. Formação de trihalometanos em soluções sanificantes utilizadas no processo desinfecção de indústrias de alimentação. Revista do Instituto de Laticínios Cândido Tostes 54:216-230.
- Mansur, M.C.D., Zani-Richinitti L.M., Santos C.P. 1999. *Limnoperna fortunei* (Dunker, 1857), spread of a bivalve mollusc to Guaiba Bay, Rio Grande do Sul, Brazil. Biociências 7:147–149
- Mansur, M.C.D., Santos, C.P., Darrigran, G., Heydrich, I., Callil, C. T. & Cardoso, F. R. 2003. Primeiros dados quali-quantitativos do mexilhão-dourado, *Limnoperna fortunei* (Dunker), no Delta do Jacuí, no Lago Guaíba e na Laguna dos Patos, Rio Grande do Sul, Brasil e alguns aspectos de sua invasão no ambiente. Revista Brasileira de Zoologia 20 (1): 75-84.
- Mansur, M.C.D., Cardoso, F.R. Ribeiro, L.A. Santos, C.P. Thormann, B.M. Fernandes, F.C. & Richinitti, L.M.Z. 2004. Distribuição e consequências após cinco anos da invasão do mexilhão-dourado, *Limnoperna fortunei*, no estado do Rio Grande do Sul, Brasil (Mollusca, Bivalvia, Mytilidae). Biociências 12 (2):165-172.
- Mansur, M. C., & Pereira, D. 2006. Limnic bivalves of the Sinos river basin, Rio Grande do Sul, Brazil (Bivalvia, Unionoida, Veneroida And Mytiloida). Revista Brasileira de Zoologia 23(4), 1123-1147.
- Mansur, M.C.D.; Santos, C.P.; Richinitti L.M.Z.; Pereira, D.; Batista, C.B.; Silveira, M.B.; Alberto, R.M.F.; Silva, M.C.P. 2008c. Ocorrência de moluscos límnicos e crustáceos em macroaglomerados do mexilhão dourado, *Limnoperna fortunei* (Dunker, 1857) sobre sarandi no Lago Guaíba (RS, Brasil). Biotemas 21(4):179-182.
- Mansur, M.C.D., Pereira, D., Santos, C.P., Bergonci, P.E.A., Thormann B.M. & Takeda, A.M. 2009. Colonização de substrato artificial pelo mexilhão-dourado, *Limnoperna fortunei* (Dunker, 1857) (Bivalvia, Mytiloida, Mytiloida), no Delta do Rio Jacuí (RS, Brasil). Biotemas 22: 75-80.
- Mansur, M. C. D., 2012. Bivalves invasores límnicos: morfologia comparada de *Limnoperna fortunei* e espécies de *Corbicula* spp. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos Límnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 61–74.
- Mansur, M. C. D., D. M. Pimpão, P. E. A. Bergonci, C. P. Santos & G. C. S. Figueiredo, 2012. Morfologia e ciclo larval comparados de bivalves límnicos invasores e nativos. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos Límnicos Invasores no Brasil: Biologia, Prevenção, Cokantrole. Redes Editora, Porto Alegre: 95–110.

- Mata, F.A.R, Dias, C., Mader, O. 2013. Utilização do remediador MXD-100 para controle de incrustação em sistemas de resfriamento de usinas hidrelétricas, ocasionada por *Limnoperna fortunei* (Dunker, 1857). In: 1 Congreso Argentino de Malacología, La Plata.
- Matsui, Y.; Nagoya, K.; Funahashi, G.; Goto, Y.; Yuasa, A.; Yamamoto, H.; Ohkawa, K.; Magara, Y. 2002. Effectiveness of Antifouling Coatings and Water Flor in Controling Attachment of the Nuisance Mussel Limnoperna fortunei. Biofouling 18 (2):137-148.
- Molina, F.R., de Paggi, S.B.J. & Paggi, J.C. 2015 Impacts of *Limnoperna fortunei* on plâncton. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p.177-190
- Molina, F.R., de Paggi, S.J., & Boltovskoy, D. 2011. Vulnerability of microcrustaceans to predation by the invasive filter-feeding mussel *Limnoperna fortunei* (Dunker). Marine and freshwater behaviour and physiology 44(6): 329-338.
- Molina, F.R., De Paggi, S.J., & Frau, D. 2012. Impacts of the invading golden mussel *Limnoperna* fortunei on zooplankton: a mesocosm experiment. Zoological Studies 51(6), 733-744.
- Molion, L.C.B. 2003. Águas do Tocantins para o São Francisco. Ciência Hoje 33(197):58-61.
- Montresor, L.C., Miranda-Filho, K.C., Paglia, A., Luz, D.M., Araujo, J.M., Silva, M.J.S., Gerhard, L., Martinez, C.B. & Vidigal, T.H. 2013. Short-term toxicity of ammonia, sodium hydroxide and a commercial biocide to golden mussel *Limnoperna fortunei* (Dunker, 1857). Ecotoxicol Environ Saf 92:150–154
- Moraes, A.C.D. 2012. Conhecimento ecológico local no estudo de mudanças ambientais, abundância de recursos e invasões biológicas no litoral norte do Rio Grande do Sul. Universidade Federal do Rio Grande do Sul. Dissertação de Mestrado.
- Morton, B. 1973. Some aspects of the biology and functional morphology of the organs of feeding and digestion of Limnoperna fortunei (Dunker) (Bivalvia: Mytilacea). Malacologia 12:265-281.
- Morton, B., Au, C.S., Lam, W.W. 1976. Control of Limnoperna fortunei. J Inst Water Eng Sci 30:147–156
- Morton, B., 1977. The population dynamics of *Limnoperna fortunei* (Dunker, 1857) (Bivalvia: Mytilacea) in Plover Cove Reservoir, Hong Kong. Malacologia 16 (1): 165-182.
- Morton, B., 1982. Some aspects of the biology and functional morphology of the organs of feeding and digestion of Limnoperna fortunei (Dunker) (Bivalvia: Mytilacea). J. Zool 206:23-34
- Morton, B. & Dinesen, G.E.. 2010. Colonization of Asian freshwaters by the Mytilidae (Bivalvia): a comparison of *Sinomytilus harmandi* from the Tonle-Sap River, Phnom Penh, Cambodia, with *Limnoperna fortunei*. Molluscan Research 30(2): 57-72.
- Morton, B. 2015a. Evolution and adaptive radiation in the Mytiloidea (Bivalvia): clues from the pericardial–posterior byssal retractor musculature complex. Molluscan Research, 35: 227-245.
- Morton, B. 2015b. The Biology and Anatomy of Limnoperna fortunei, a Significant Freshwater Bioinvader: Blueprints for Success. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p.3-42

- Nakano, D., Kobayashi, T. & Sakaguchi, I. 2015. Population dynamics and growth of *L. fortunei*. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p.105-118
- Nakano, D., Kobayashi, T. & Sakaguchi, I. 2010. Difference in larval dynamics of golden mussel *Limnoperna fortune* between dam reservoirs with and without an aeration system. Landscape and Ecological Engineering 6: 53-60.
- Netto, O.S. 2011. Controle da Incrustação de organismos invasores em materiais de sistemas de resfriamento de usinas hidrelétricas. Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Engenharia e Ciência dos Materiais PIPE. Setor de Tecnologia, Universidade Federal do Paraná.
- Newton, T.J., Boogaard, M.A., Gray, B.R., Hubert, T.D. & Schloesser, N.A. (2017). Lethal and sublethal responses of native freshwater mussels exposed to granular Bayluscide®, a sea lamprey larvicide. *Journal of Great Lakes Research*, 43(2), 370-378.
- Ohkawa, K., Nishida, A., Ichimiya, K., Matsui, Y., Nagaya, K., Yuasa, A. & Yamamoto, H. (1999). Purification and characterization of a dopa- containing protein from the foot of the Asian freshwater mussel, *Limnoperna fortunei*. *Biofouling*, *14*(3), 181-188.
- Oliveira, M.D., 2003 Ocorrência e impactos do mexilhão-dourado (*Limnoperna fortunei*, Dunker 1857) no Pantanal Mato-Grossense. Circular Técnica EMBRAPA 38: 1-6.
- Oliveira, M.D. & Barros, L.F. De 2003. Mexilhão dourado no Pantanal um problema ambiental e econômico. Jornal da Fundação Dalmo Giacometti p. 1 3.
- Oliveira, M.D., Takeda, A.M., Barros, L.F., Barbosa D.S. & Resende, E.K. 2006. Invasion by *Limnoperna fortunei* (Dunker, 1857) (Bivalvia, Mytilidae) of the Pantanal wetland, Brazil. Biological Invasions 8: 97-104.
- Oliveira, M.D., Calheiros, D.F. & Padovani, C.R. 2013. Mapeamento e Descrição das Áreas de Ocorrência dos Eventos de Decoada no Pantanal. Boletim de Pesquisa e Desenvolvimento 121: 1-20.
- Oliveira, M.D., Hamilton, S.K., Calheiros, D.F. & Jacobi, C.M. 2010b 2010a. Oxygen Depletion Events Control the Invasive Golden Mussel (*Limnoperna fortunei*) in a Tropical Floodplain. Wetlands 30: 705-716.
- Oliveira, M.D., Hamilton, S.K. & Jacobi, C.M. 2010b. Forecasting the expansion of the invasive golden mussel *Limnoperna fortunei* in Brazilian and North American rivers based on its occurrence in the Paraguay River and Pantanal wetland of Brazil. Aquatic Invasions 5 (1): 59-73.
- Oliveira, M.D., Hamilton, S.K. Calheiros, D.F. Jacobi C.M. & Latini, R.O. 2010c. Modeling the potential distribution of the invasive golden mussel *Limnoperna fortunei* in the Upper Paraguay River system using limnological variables. Brazilian Journal of Biology 70 (3): 831-840.
- Oliveira, M.D., Calheiros, D.F. Jacobi, C.M. & Hamilton, S.K. 2011. Abiotic factors controlling the establishment and abundance of the invasive golden mussel *Limnoperna fortunei*. Biological Invasions 13: 717-729.
- Oliveira, M.D.; Ayrosa, D.M.R.; Castellani, D.; Campos, M. & Mansur, M.C. 2014. Mexilhão dourado nas pisciculturas em tanques-rede. Panorama da Aquicultura 145: 23-29.

- Oliveira, M.D., Campos, M.C.S., Paolucci, E.M., Mansur, M.C.D. Hamilton, S.K. 2015. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p. 333-356.
- Ono, E. A. 2005. Cultivar peixes na Amazônia: possibilidade ou utopia. Panorama da Aqüicultura 15(90):41-48.
- Paolucci, E., Thuesen, E., Cataldo. D, & Boltovskoy, D. 2010b. Veligers of an introduced bivalve (*Limnoperna fortunei*) are a new food resource that enhances growth of larval fish in the Paraná River (South America). Freshwater Biology 55: 1831-1844.
- Paolucci, E.M., & Thuesen, E. V. 2015. Trophic relationships of Limnoperna fortunei with larval fishes. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p. 211-229
- Paolucci, E.M., Thuesen, E.V., Cataldo, D.H., & Boltovskoy, D. 2010. Veligers of an introduced bivalve, *Limnoperna fortunei*, are a new food resource that enhances growth of larval fish in the Paraná River (South America). Freshwater Biology, 55(9), 1831-1844.
- Penchaszadeh, P.E., Darrigran, G.A, Angulo C, Averbuj A, Brögger M, Dogliotti A, Pírez N (2000) Predation of the invasive freshwater mussel Limnoperna fortunei (Dunker, 1857) (Mytilidae) by the fish Leporinus obtusidens Valenciennes, 1846 (Anostomidae) in the Rio de la Plata, Argentina. J Shellfish Res 19: 229–23
- Pereira, D. 2014. Bivalves Límnicos em Regiões Hidrográficas e Ecorregiões na América do Sul e Subsídios para o Controle do Bivalve Invasor Limnoperna fortunei (Dunker, 1857). Universidade Federal do Rio Grande do Sul. Tese de Doutorado
- Pereira, D., Bergonci, P.E.A., Santos, C. P., Gazulha, V., Mansur, M.C.D., Bergmann, C.P., Vicenzi, J. & Santos, S.C.A. 2012a. Distribuição espacial do mexilhão-dourado na bacia do médio Rio Tietê/Jacaré, Estado de São Paulo, Brasil: relação com moluscos límnicos, fitoplâncton e qualidade da água. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos Límnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 221-233.
- Pereira, D., Arruda, J.A., P.E.A., Bergonci, Oliveira, A.S., Postiglione, R., Mansur, M.C.D. 2012b. Como monitorar moluscos límnicos invasores bentônicos e macroinvertebrados associados? In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle. Redes Editora, Porto Alegre, pp 155–184
- Pereyra P.J., Rossini G.B., Darrigran, G.A. 2011. Toxicity of three commercial tannins to the nuisance invasive species *Limnoperna fortunei* (Dunker, 1857): implications for control. Fresenius Environ Bull 20:1432–1437
- Perepelizin, P.V., Boltovskoy D. 2014. Effects of 254 nm UV irradiation on the mobility and survival of larvae of the fouling invasive mussel Limnoperna fortunei. Biofouling 30:197–202
- Pfeifer, N.T.S. & Pitoni, V.L.L. 2003. Análise qualitativa estacional da fauna de moluscos límnicos no Delta do Jacuí, Rio Grande do Sul, Brasil. Biociências 11(2):145-158
- Pie, M.R., Boeger, W.A., Patella L. & Falleiros R.M. 2006. A fast and accurate molecular method for the detection of larvae of the golden mussel *Limnoperna fortunei* (Mollusca: Mytilidae) in plankton samples. J Molluscan Stud 72:218–21

- Province of British Columbia. 2015. British Columbia Zebra and Quagga Mussel Early Detection and Rapid Response Plan. Disponivel em: https://www.for.gov.bc.ca/hra/invasive-species/Publications/Prov_ZQM_EDRR_Plan.pdf
- Ribeiro, D.C. & Pelli, A. 2011. Toxicidade aguda e crônica do Mxd-100 em camarões de água doce *Macrobrachium amazonicum* (Heller, 1862) (Crustacea, Palaemonidae) em condições experimentais. UNINGÁ Review. 08:98-102
- Ricciardi, A. 1998. Global range expansion of the Asian mussel *Limnoperna fortunei* (Mytilidae): Another fouling threat to freshwater systems. Biofouling 13: 97-106.
- Rosa, D.M., Santos, G.B., Gomes, P.L.A., Campos, M.C.S., & Dias, J.H.P. 2015. Occurrence of *Limnoperna fortunei* (Dunker, 1857) in the fish diet from a south- eastern Brazilian reservoir. Journal of Applied Ichthyology 31(1), 188-191.
- Rotta, M.A., 2003 Aspectos gerais da fisiologia e estrutura do sistema digestivo dos peixes relacionados à piscicultura. Corumbá: EMBRAPA Pantanal, 2003.48 p.
- Santos, C.P., Nehrke, M.V., Mansur, M.C.D., & Gazulha, V. 2012. Como monitorar bivalves invasores no plâncton? Método da microscopia óptica. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos Límnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 139-142.
- Santos, C.P., Würdig, N.L. & Mansur, M.C.D. 2005. Fases larvais do mexilhão-dourado *Limnoperna fortunei* (Dunker) (Mollusca, Bivalvia, Mytilidae), na bacia do lago Guaíba, Rio Grande do Sul, Brasil. Revista Brasileira de Zoologia 22 (3): 702-708.
- Santos, C.P., Würdig, N.L. & Mansur, M.C.D. 2008. Variações no comprimento dos indivíduos de uma população do mexilhão-dourado, *Limnoperna fortunei* (Mollusca: Bivalvia: Mytilidae), ao longo do ano, na Praia do Veludo, lago Guaíba, Rio Grande do Sul, Brasil. Revista Brasileira de Zoologia 25 (3): 389-396.
- Santos C.P., Raya Rodriguez M.T., Mansur, M,.D., Nehrke, M. V., Zurita, M.L.L. (2012a) Controle de *Limnoperna fortunei* com aplicação de radiação ultravioleta. In: Mansur, M.C.D., Santos, C.P., Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle, Redes Editora, Porto Alegre, pp 335–338
- Santos, C.P., Vicenzi, J., Berutti, F.A., Mansur, M.C.D., Bergmann, C. P., Raya Rodriguez, M.T., Nehrke, M.V., Zurita, M.L.L. 2012b. Controle de bivalves com a utilização do ultrassom. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle, Redes Editora, Porto Alegre, pp 339–341
- Silva, F.A., Barbosa, N.P.U, Paula, R.S. & Carvalho, M.D. 2016 Mexilhão-dourado no Brasil: detecção de um perigoso invasor. Article in Ciência Hoje 57:38-42
- Silva, E.P 2012. Genética da bioinvasão do mexilhão-dourado. In: Mansur MCD, Santos CP, Pereira D, Padula Paz IC, Leite Zurita ML, Raya Rodriguez MT, Vilar Nehrke M, Aydos Bergonci PE (eds) Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle. Redes Editora, Porto Alegre, p 51–57.

- Silveira, J., Villela, I.V., Oliveira, I.M., Silva, J., Henriques, J.A.P. A utilização do mexilhão dourado (*Limnoperna fortunei* (Dunker, 1857)) como biomonitor de genotoxicidade ambiental. Revista de Iniciação Científica da ULBRA, n. 2, 2016.
- Souza, J.B.; Sartori, L.; Daniel, L.A. 2000. Influência da cor e turbidez na desinfecção de águas de abastecimento utilizando-se cloro e radiação ultravioleta. In: XXVII Congresso Interamericano de Engenharia Sanitária e Ambiental, p. 1-6.
- Sylvester, F. & Sardina, P. Relationship of *L. fortunei* with benthic animals. 2015. In Boltovskoy, D. (Ed.) *Limnoperna Fortunei* The Ecology, Distribution And Control Of A Swiftly Spreading Invasive Fouling Mussel, Springer, p.191-210
- Sylvester, F., Boltovskoy, D. & Cataldo, D., 2006. Tasas de Clareado: Ritmos E Impacto. In Darrigran, G. And Damborenea, C., (Eds.). Bio-invasion del mejillón dorado en el continente americano. La Plata: Edulp.
- Sylvester, F., Boltovskoy, D. & Cataldo, D.H. 2007. Fast response of freshwater consumers to a new trophic resource: predation on the recently introduced asian bivalve *Limnoperna fortunei* in the lower Paraná River, South America. Austral Ecol. 32(4):403-415.
- SUFRAMA. 2003. Zona Franca de Manaus: Potencialidades Estudo de Viabilidade Econômica: piscicultura. Disponível em: http://www.suframa.gov.br/publicacoes/proj_pot_regionais/piscicultura.pdf
- Uhde, V., Massoli, E.V. Jr, Callil, C.T. 2012. Efeito do macrofouling sobre a comunidade de invertebrados aquáticos. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle, Redes Editora, Porto Alegre, pp 235–241
- Uliana, E.R.; Callil, C.T.; Oliveira, M.D. 2006. Avaliação temporal da reprodução do Mexilhão dourado, *Limnoperna fortunei* (Dunker, 1857) no Rio Paraguai, Corumbá, MS. In: IV Encontro Nacional sobre Água de Lastro, 2006, Arraial do Cabo. Anais do IV Encontro Nacional sobre Água de Lastro.
- Uliano-Silva, M., Americo, J. A., Brindeiro, R., Dondero, F., Prosdocimi, F., & de Freitas Rebelo, M. 2014. Gene discovery through transcriptome sequencing for the invasive mussel *Limnoperna fortunei*. PloS one 9(7), e102973.
- Uliano-Silva, 2015 The genetics of the golden mussel (*L. fortunei*): are gene related to invasiveness? In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p.67-76
- Uliano-Silva, M., Americo, J.A., Costa, I., Schomaker-Bastos, A., de Freitas Rebelo, M., & Prosdocimi, F. 2016. The complete mitochondrial genome of the golden mussel *Limnoperna fortunei* and comparative mitogenomics of Mytilidae. Gene 577(2): 202-208.
- Vermulm Junior, H. & Giamas, M.T.D. 2008. Ocorrência do mexilhão-dourado *Limnoperna fortunei* (Dunker, 1857) (Mollusca; Bivalvia; Mytilidae), no trato digestivo do "Armal" *Pterodoras granulosus* (Valenciennes, 1821) (Siluriformes; Doradidae), do Rio Paraná, São Paulo, Brasil. Boletim do Instituto de Pesca 34 (1) 175-179.
- Villar, C.,L. Mercado, A. Rodrigues Capitulo & C. Bonetto, 1997. Presencia del Molusco invasor *Limnoperna fortunei* (Dunker, 1857) (Bivalvia: Mytilidae) en el Paraná. Gayana Zoologia 61: 87-96.

- Villar, C., Stripeikis, J., D'huicque, L., Tudino, M., Troccoli, O., & Bonetto, C. 1999. Cd, Cu and Zn concentrations in sediments and the invasive bivalves *Limnoperna fortunei* and *Corbicula fluminea* at the Rio de la Plata basin, Argentina. Hydrobiologia, 416, 41-49.
- Villela, I.V., de Oliveira, I.M., da Silva, J. & Henriques, J.A.P. 2006. DNA damage and repair in haemolymph cells of golden mussel (*Limnoperna fortunei*) exposed to environmental contaminants. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 605(1): 78-86.
- Tscha, M.K, Patella, R., Ostrensky, A., Boeger, W.A. 2012. O método molecular de prospecção do mexilhão-dourado. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle. Redes Editora, Porto Alegre, p 143–148
- Takeda, A. M. & Fujita, D.S. 2012. Experiência da procura e monitoramento no início da invasão de mexilhão-dourado no Rio Paraná e no reservatório de Itaipu. In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., , M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos Límnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 207-217.
- Terra, N.R., Lemieszek, M.B., de Lemos, C.T., & Leite, E.H. 2007. Presence of *Limnoperna fortunei* (Dunker, 1857) in the Uruguai River and Guaiba Lake basins, Rio Grande do Sul, Brasil. FEPAM em Revista 1(1):12-19.
- Uliano-Silva M, Americo JA, Brindeiro R, Dondero F, Prosdocimi F, et al. (2014) Gene Discovery through Transcriptome Sequencing for the Invasive Mussel *Limnoperna fortunei*. PLoS ONE 9(7): e102973.DOI:10.1371/journal.pone.0102973
- Uliano-Silva m, Américo JA, Brindeiro R, Dondero F, Prosdocimi F, Rebelo MF. 2015. The Genetics of the Golden Mussel (Limnoperna fortunei): Are Genes Related to Invasiveness? in Boltovskoy D (ed). *Limnoperna Fortunei*. Volume 10 of the series Invading Nature Springer Series in Invasion Ecology pp 67-75. DOI: 10.1007/978-3-319-13494-9_4
- Uliano-Silva M, Americo JA, Costa I, Schomaker-Bastos A, de Freitas Rebelo M, Prosdocimi F. 2015. The complete mitochondrial genome of the golden mussel *Limnoperna fortunei* and comparative mitogenomics of Mytilidae. Gene. S0378-1119(15)01463-8. DOI: 10.1016/j.gene.2015.11.043
- Uliano da Silva M, Dondero F, Otto T, Costa I, Lima NC, Americo JA, Mazzoni C, Prosdocimi F, Rebelo MF. (2017) A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel *Limnoperna fortunei*. PeerJ Preprints 5:e2995v1https://doi.org/10.7287/peerj.preprints.2995v1
- Wachholz, L., Nunes, R.V., Broch, J., & De Souza, C. (2017). Possibilidade do uso de Mexilhão-dourado contaminado com metais tóxicos em dietas para frangos de corte. Revista Colombiana de Ciencia Animal-RECIA 9(2), 227-235.
- Western Regional Panel on Aquatic Nuisance Species, 2010. Quagga-Zebra Mussel Action Plan for Western US Waters. Disponível em: https://www.anstaskforce.gov/QZAP/QZAP_FINAL_Feb2010.pdf

- Xu, M., Wang, Z.Y., Lin, C.C., Pan, B.Z &Zhao, N. 2013. Experimental study of invasion and biofouling of freshwater mussel *Limnoperna fortunei*. Int J Geosci 4:1–7
- Xu, N. 2015. Distribution and spread of *Limnoperna fortunei* in China. In Boltovskoy, D. (Ed.) *Limnoperna fortunei* The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, p. 312-320
- Zanella O & Marenda, L.D. 2002. Ocorrência de *Limnoperna* fortunei na central hidrelétrica de Itaipu. En: V Congreso Latinoamericano de Malacologia. Sao Paulo, Brasil.
- Zurita, M.L.L. 2012. Controle físico: conceitos básicos In: Mansur, M.C.D., Santos, C.P, Pereira. D., Paz, I.C.P., M.L. L., Raya-Rodriguez, M.T., Nehrke, M.V., Bergonci P.EA. org. Moluscos Límnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 207-217.

Legislação

- Decreto Legislativo nº 148/2010. Disponível em: http://www2.camara.leg.br/legin/fed/decleg/2010/decretolegislativo-148-12-marco-2010-603816-publicacaooriginal-124707-pl.html
- BRASIL, Decreto 4.074/2002. Disponível em: http://www.planalto.gov.br/ccivil_03/decreto/2002/d4074.htm
- BRASIL, Lei 7.802, de 11 de julho de 1989. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/L7802.htm
- CONAMA, Resolução n° 430 de 2011. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646
- CONAMA, Resolução nº 467, de 16 de julho de 2015. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=712
- Estado do Rio Grande do Sul, Resolução CONSEMA nº 128 de 24 de novembro de 2006. Disponível em: http://www.sema.rs.gov.br/upload/arquivos/201611/30155644-resolucao-128-06-efluentes.pdf
- Estado do Paraná, Portaria IAP n° 74, de 19 de Abril de 2007. Disponível em: http://celepar7.pr.gov.br/sia/atosnormativos/form_cons_ato1.asp?Codigo=1956.
- Estado do Paraná, Portaria IAP n° 59, de 15 de Abril de 2015. Disponível em: http://www.iap.pr.gov.br/arquivos/File/Lista_invasoras_PR_corrigida_set_2015.pdf.
- Estado de Santa Catarina, Resolução CONSEMA nº 8, de 14 de Setembro de 2012. Disponível em: http://www.fatma.sc.gov.br/upload/rppne/resconsema201208.pdf.
- Estado de São Paulo, Deliberação CONSEMA nº 30 de 2011. Disponível em: http://arquivos.ambiente.sp.gov.br/consema/deliberacoes/2011/DelNormativa01.pdf
- IBAMA, Instrução Normativa nº 17, de 21 de Outubro de 2015. Disponível em:
- IBAMA, Instrução Normativa nº 18, de 21 de Outubro de 2015. Disponível em: http://www.ibama.gov.br/sophia/cnia/legislacao/IBAMA/IN0018-21102015.pdf

- Instrução Normativa Conjunta Nº 25, de 14 de Setembro de 2005. Disponível em: http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/agrotoxicos/legislacao/arquivos-de-legislacao/inc-25-2005-ret/view
- Marinha do Brasil, Norma da Autoridade Marítima para o Gerenciamento da Água de Lastro de Navios Normam-20/Dpc. Disponível em: https://www.dpc.mar.mil.br/sites/default/files/normam20.pdf
- Ministério do meio Ambiente, Portaria nº 494, de 22 de dezembro de 2003. Disponível em: http://www.furnas.com.br/arcs/pdf/MexilhaoDourado/Portaria%20494.2003%20de%2022%20d ezembro%202003.PDF