

Produto 4 – Vulnerabilidade e exposição do setor portuário costeiro brasileiro às ameaças climáticas

WayCarbon

Elaborado por:

WayCarbon

Essa publicação foi realizada por uma equipe formada por consultores independentes sob a coordenação da Cooperação Alemã para o Desenvolvimento Sustentável, por meio do projeto Apoio a Brasil na Implementação da sua Agenda Nacional de Adaptação à Mudança do Clima (ProAdapta).

Este projeto foi pactuado no âmbito da Cooperação Alemã para o Desenvolvimento Sustentável, por meio da parceria entre o Ministério do Meio Ambiente do Brasil e a Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ), no âmbito da Iniciativa Internacional para o Clima (IKI, sigla em alemão), do Ministério Federal do Meio Ambiente, Proteção da Natureza e Segurança Nuclear (BMU, sigla em alemão).

Todas as opiniões aqui expressas são de inteira responsabilidade dos autores, não refletindo necessariamente a posição da GIZ e do MMA. Este documento não foi submetido à revisão editorial.

MMA

Secretaria de Clima e Relações Internacionais (SCRI) Departamento de Clima

EQUIPE TÉCNICA – GIZ

Ana Carolina Câmara (Coordenação) Eduarda Freitas (Assessora Técnica) Pablo borges (Assessor Técnico)

EQUIPE TÉCNICA – ANTAQ

Superintendência de Desempenho, Desenvolvimento e Sustentabilidade – SDS José Renato Ribas Fialho
Gerência de Desenvolvimento e Estudos – GDE
José Gonçalves Moreira Neto
Gerência de Meio Ambiente e Sustentabilidade – GMS
Auxiliadora do Rego Borges

Equipe INPE

Jean Ometto Lincoln Alves

Ministério do Meio Ambiente

Esplanada dos Ministérios, Bloco B, Brasília/DF, CEP 70068-901

Telefone: + 55 61 2028-1206

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Sede da GIZ: Bonn e Eschborn

GIZ Agência Brasília

SCN Quadra 01 Bloco C Sala 1501

Ed. Brasília Trade Center 70.711-902 Brasília/DF

T + 55-61-2101-2170

E giz-brasilien@giz.de

www.giz.de/brasil

A encargo de:

Ministério Federal do Ambiente, Proteção da Natureza e Segurança Nuclear (BMU) da Alemanha

BMU Bonn:

Robert-Schuman-Platz 3 53175 Bonn, Alemanha

T +49 (0) 228 99 305-0

Diretora de Projeto:

Ana Carolina Câmara

T:+55 61 9 99 89 71 71

T+55 61 2101 2098

E ana-carolina.camara@giz.de

IMPACTOS E RISCOS DA VARIABILIDADE CLIMÁTICA NO SETOR PORTUÁRIO

P4 – Vulnerabilidade e exposição do setor portuário costeiro brasileiro às ameaças climáticas

Cooperação Alemã para o Desenvolvimento Sustentável – GIZ no Brasil

Julho – 2021

Versão 4.0

WWW.WAYCARBON.COM

CLIENTE	PROADAPTA CSI PROADA		
PROJETO	GIZ20A		
ENTREGÁVEL	Entregável P4 - Vulnerabilidade e exposição do setor portuário costeiro brasileiro às ameaças climáticas		
AUTORES	WAYCARBON Melina Amoni; melina.amoni@waycarbon.com Sergio Margulis; sergio.margulis@waycarbon.com Marina Lazzarini; marina.lazzarini@waycarbon.com Natalie Unterstell; natalieunterstell@gmail.com Franciele Barros; franciele.barros@waycarbon.com Carlos Guimarães; carlos.guimaraes@waycarbon.com Lis Vale; lis.vale@waycarbon.com Dawber Batista; dawber.batista@waycarbon.com Marcus Vinicius Ferreira da Silva; engenharia.nca@gmail.com		
COLABORADORES	GIZ Eduarda Freitas; eduarda.freitas@giz.de Pablo Borges; pablo.borges@giz.de Ana Carolina Câmara; ana-carolina.camara@giz.de ANTAQ José Gonçalves Moreira Neto; jose.moreira@antaq.gov.br Anderson Paz; anderson.paz@antaq.gov.br Alessandro Ramalho; alessandro.ramalho@antaq.gov.br INPE Lincoln Alves; lincoln.alves@inpe.br		

HISTÓRICO DO DOCUMENTO

Nome do documento	Data	Natureza da revisão
Produto4_09ABR_V01	09/04/2021	Primeira versão para comentários

Produto4_25JUN_V02	25/06/2021	Segunda versão para comentários
Produto4_15JUL_VFI	15/07/2021	Terceira versão para comentários
Produto4_23JUL_VFINAL	22/07/2021	Versão Final

LISTA DE TABELAS

Tabela 1 - Escala do Indicador de Exposição
Tabela 2 - Infraestruturas portuárias analisadas para cada ameaça climática
Tabela 3 – Escala do indicador de vulnerabilidade1
Tabela 4 - Indicadores utilizados para análise de sensibilidade às ameaça
selecionadas12
Tabela 5 – Condição da área abrigada dos 21 portos públicos analisados14
Tabela 6 – Classificação dos portos por tipo de área abrigada1
Tabela 7 - Nível de sensibilidade a depender da tipologia portuária e da ameaça
analisada20
Tabela 8 - Indicadores utilizados na elaboração do indicador de capacidade adaptativa
às tempestades29
Tabela 9 - Indicadores utilizados na elaboração do indicador de capacidade adaptativa
aos vendavais29
Tabela 10 - Indicadores utilizados na elaboração do indicador de capacidade adaptativa
ao aumento do nível do mar20
Tabela 11 - Indicador de exposição às tempestades2
Tabela 12 - Indicador de exposição aos vendavais28
Tabela 13 - Indicador de exposição ao aumento do nível do mar28
Tabela 14 - Indicador de vulnerabilidade as tempestades
Tabela 15 - Indicador de sensibilidade às tempestades3
Tabela 16 - Indicador de capacidade adaptativas às tempestades32
Tabela 17 - Indicador de vulnerabilidade aos vendavais34
Tabela 18 - Indicador de sensibilidade aos vendavais3
Tabela 19 - Indicador de capacidade adaptativa aos vendavais3
Tabela 20 - Indicador de vulnerabilidade ao aumento do nível do mar3
Tabela 21 - Indicador de capacidade adaptativa ao aumento do nível do mar3
Tabela 22 - Indicador de sensibilidade ao aumento do nível do mar39

SUMÁRIO

	SU	MÁRI	0	4
1	II	NTRO	DDUÇÃO	5
	1.1	OBJE	ETIVO	6
2	N	/IETO	DOLOGIA	7
	2.1	EXPO	DSIÇÃO	7
	2	2.1.1	Número de Infraestruturas Portuárias	9
	2	2.1.2	Movimentação de Carga Anual1	0
	2.2	VU	ILNERABILIDADE1	1
	2	2.2.1 S	Sensibilidade1	2
		2.2.1	1.1 Condição da Área Abrigada1	3
		2.2.1	1.2 Tipo de Porto1	5
		2.2.1	1.3 Tipo de Carga Movimentada2	2
	2	2.2.2 C	Capacidade Adaptativa2	:3
3	F	RESUI	LTADOS E ANÁLISES2	?7
	3.1	INE	DICADOR DE EXPOSIÇÃO2	27
	3.2	INE	DICADOR DE VULNERABILIDADE3	0
	3	3.2.1 T	empestades3	0
	3	3.2.2 V	/endavais3	4
	3	3.2.3 A	Aumento do Nível do Mar3	7
4	C	CONS	IDERAÇÕES FINAIS E PRÓXIMOS PASSOS4	1
	4.1	REC	OMENDAÇÕES E PRÓXIMOS PASSOS4	4

RE	FERÊNCIAS	. 46
	APÊNDICE I – DETALHAMENTO DO NÚMERO DE INFRAESTRUTURAS	
РО	RTUÁRIAS	. 48
AP	ÊNDICE II – DETALHAMENTO DA MOVIMENTAÇÃO DE CARGA ANUAL	. 52
AP	ÊNDICE III – DETALHAMENTO DO TIPO DE CARGA MOVIMENTADO	. 53
1	INTRODUÇÃO	

A WayCarbon foi contratada pela Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH no contexto do projeto "Apoio ao Brasil na Implantação da Agenda Nacional de Adaptação à Mudança do Clima – PROADAPTA", através da cooperação entre GIZ e ANTAQ, para prestação de serviços técnicos especializados, coordenação e execução das atividades referente ao Termo de Referência (TR) "Impactos e riscos da variabilidade climática no setor portuário costeiro".

Este relatório apresenta o **Produto 4 (P4) - Vulnerabilidades (sensibilidade e** capacidade adaptativa) e Exposição do Setor Portuário da Costa Brasileira ao Clima, seguindo requisitos do TR e escopo da Proposta Técnica enviada. De modo geral, o P4 compreende as respostas para as seguintes perguntas norteadoras:

- (1) "Qual é o nível de vulnerabilidade (sensibilidade e capacidade adaptativa) e exposição dos portos às ameaças climáticas?"
- (2) "Quais informações climáticas são usadas nas tomadas de decisão hoje?"
- (3) "Com base no estudo das ameaças (Produto 3), quais informações climáticas deveriam ser usadas na tomada de decisão?"
- (4) "Quais são os horizontes temporais das tomadas de decisão (do planejamento setorial, da gestão e da operação, etc.)?"

O P4 está estruturado em 4 capítulos, sendo eles:

 Capítulo 1 – Introdução: apresenta as questões norteadoras e o objetivo do presente relatório;

- Capítulo 2 Metodologia: apresenta os procedimentos metodológicos utilizados para elaboração dos indicadores de exposição e vulnerabilidade relacionado às ameaças de tempestades, vendavais e ao aumento do nível do mar;
- Capítulo 3 Resultados e Análises: apresenta os resultados e as discussões dos indicadores de exposição e vulnerabilidade às tempestades, aos vendavais e ao aumento do nível do mar;
- Capítulo 4 Considerações Finais e Próximos Passos: apresenta as principais conclusões do trabalho realizado, as limitações encontradas, recomendações e os próximos passos;

1.1 OBJETIVO

Este relatório (P4) é um dos componentes de um projeto mais amplo que tem como objetivo último mensurar o risco climático dos portos costeiros do Brasil. O objetivo geral do P4 é apresentar como os portos brasileiros costeiros estão expostos à mudança do clima e o quão vulneráveis estão considerando as variáveis que influenciam na sensibilidade e capacidade de adaptação. Os objetivos específicos são responder e analisar as 4 perguntas norteadoras já mencionadas:

- Identificar o nível de exposição e vulnerabilidade dos portos;
- Identificar se os portos utilizam informações climáticas para as tomadas de decisão;
- Apontar quais informações climáticas deveriam ser utilizadas nas tomadas de decisão;
- Identificar e apontar os horizontes temporais das tomadas de decisão (do planejamento setorial, da gestão e da operação).

2 METODOLOGIA

Conforme apresentando no Produto 1 – Plano de Trabalho e Revisão Bibliográfica, a metodologia utilizada na Análise de Risco Climático para o Setor Costeiro Brasileiro foi baseada na metodologia apresentada no Quinto Relatório de Avaliação do Painel Intergovernamental sobre Mudanças Climáticas (IPCC - AR5), o qual aponta que o risco é o resultado da interação entre a **ameaça climática**, a **exposição** e a **vulnerabilidade** (IPCC, 2014). Cada uma dessas dimensões é influenciada, distintivamente, por uma série de elementos climáticos, sociais, infraestruturais e econômicos, o que traz uma característica multidisciplinar para o risco climático.

A tradução do resultado da interação entre as três dimensões do risco climático, em termos mensuráveis e gerenciáveis, bem como a compreensão dos diferentes elementos envolvidos no seu cálculo foram feitas por meio de indicadores. A elaboração de indicadores auxilia no entendimento das relações de casualidade e influência dos fatores envolvidos no cálculo do risco climático do setor portuário da costa brasileira.

Assim, as seções a seguir irão detalhar a metodologia adotada para elaboração dos indicadores de exposição e vulnerabilidade. Destaca-se que, diferentemente do indicador de ameaça, o qual se obteve por meio de uma análise temporal, ponderando o comportamento observado e projetado para 2030 e 2050, os indicadores de exposição e vulnerabilidade consideraram apenas o momento presente.

2.1 EXPOSIÇÃO

De acordo com o IPCC (2014), a exposição envolve a presença de pessoas, formas de subsistência, espécies ou ecossistemas, funções ambientais, serviços, recursos, infraestrutura ou ativos econômicos, sociais ou culturais em locais e ambientes que podem ser adversamente afetados.

Ao considerar o setor portuário, optou-se como indicadores o "número de infraestruturas existentes" e a "movimentação anual de carga" para a representar o nível de exposição dos 21 portos selecionados. Esses indicadores foram estimados a partir de dados disponíveis na bibliografia e em dados fornecidos pelos portos por meio de questionário eletrônico enviado.

Ressalta-se que, apesar da importância de se considerar o número de pessoas no cálculo da exposição, essa variável não foi utilizada devido à dificuldade em se obter com exatidão o número de funcionários que circulam nos portos diariamente.

Dessa maneira, os indicadores "número de infraestruturas" e "movimentação de carga anual" foram inseridos no cálculo do indicador de exposição da seguinte forma (Equação 1):

$$Exposição = Média (Indicador_{NI}, Indicador_{MC})$$
 [1]

Em que *NI* representa o indicador "número de infraestruturas" e o *MC* o indicador "movimentação de carga anual".

Os valores do indicador de exposição variam de 0 a 1, de acordo com as seguintes classes: muito baixa, baixa, média, alta, muito alta (Tabela 1). Assim, quanto mais próximo de 0, menor é a exposição do porto frente a uma determinada ameaça climática, e quanto mais próximo de 1, maior é a exposição.

Tabela 1 - Escala do Indicador de Exposição

Faixa	Classe
0 ≤ a < 0,2	Muito baixa
0,2 ≤ a < 0,4	Baixa

0,4 ≤ a < 0,6	Média
0,6 ≤ a < 0,8	Alta
0,8 ≤ a ≤ 1	Muito alta

2.1.1 Número de Infraestruturas Portuárias

O número de infraestruturas existentes foi obtido através dos Planos Mestres, documentos que apresentam elementos, ferramentas e alternativas para melhoria da gestão e expansão dos portos brasileiros. Reforça-se que o ano do Plano Mestre de cada porto varia entre 2017 e 2020, podendo haver variações no número total de infraestruturas ao se comparar com o ano presente. Além disso, ressalta-se que foram contabilizadas apenas as infraestruturas portuárias em operação e determináveis, localizadas na poligonal do porto público, excluindo assim as seguintes infraestruturas:

- I. Infraestruturas inoperantes que, apesar de estarem expostas, não ocasionariam a paralisação da operação no caso da ocorrência de uma determinada ameaça;
- Infraestruturas que, até o momento da elaboração do documento, não estavam operando, classificadas como "em fase de pré-operação";
- III. Infraestruturas que estavam paralisadas devido a reformas;
- IV. Infraestruturas existentes que não foram apontadas a quantidade;

Vale reforçar que a análise da presença de infraestruturas foi associada à concretização de cada uma das ameaças climáticas consideradas: tempestades, vendavais e aumento do nível do mar. Para isso, levou-se em conta a localização geográfica, ou seja, se as infraestruturas portuárias estão localizadas em ambientes que podem ser adversamente afetados pelas ameaças climáticas analisadas. Assim, para análise da exposição às tempestades considerou-se as infraestruturas: obras de abrigo, equipamentos de movimentação de carga, instalações de armazenagem e infraestruturas de acostagem. Para vendavais, analisou-se apenas as instalações de armazenagem e os equipamentos de movimentação de carga. Por último, para o aumento do nível do mar considerou-se obras de abrigo, instalações de armazenagem e infraestruturas de acostagem (Tabela 2) (APÊNDICE I).

Tabela 2 - Infraestruturas portuárias analisadas para cada ameaça climática

AMEAÇA

INFRAESTRUTURAS PORTUÁRIAS

	Obras de Abrigo	Equipamentos de movimentação de carga	Instalação de Armazenagem	Infraestrutura de Acostagem
Tempestade	Ø	②	Ø	②
Vendaval		⊘	②	
Aumento do Nível do Mar	•		•	•

Após a contabilização das infraestruturas portuárias aplicou-se a fórmula logarítmica na base 10, e, posteriormente a fórmula de padronização, para obter-se o valor do indicador (Equação 2 e 3). A função logarítmica foi aplicada com o intuito de compatibilizar os valores com múltiplas ordens de grandeza referentes aos números de infraestrutura. Já a padronização das variáveis foi realizada com o objetivo de se obter valores entre zero e um, onde zero representa a melhor situação e 1 a pior.

O método de padronização foi definido por especialistas da GIZ, ANTAQ, INPE, em reunião de trabalho com o apoio da WayCarbon, de modo a minimizar distorções relativas.

$$y = Log_{10}(x)$$
 [2]

Em que x representa o número de infraestruturas portuárias.

Indicador padronizado =
$$\frac{\frac{y}{\sigma}}{m\acute{a}x(\frac{y}{\sigma})}$$
 [3]

Em que y representa o número de infraestruturas portuárias após aplicação da fórmula logarítmica na base 10, e "o" o desvio padrão da amostra.

A partir dos dados padronizados, foram classificados e comparados os 21 portos analisados.

2.1.2 Movimentação de Carga Anual

O indicador "movimentação de carga anual" foi selecionado assumindo como pressuposto que os portos que movimentam mais cargas possuem mais bens

econômicos expostos, e, por conseguinte, um maior nível de exposição. A movimentação de carga anual, em toneladas, dos portos foi obtida por meio da média dos dados fornecidos pelo Anuário da ANTAQ entre os anos de 2018, 2019 e 2020 (APÊNDICE II).

Igualmente ao indicador "número de infraestruturas", aplicou-se a fórmula logarítmica na base 10, e a padronização dos dados (Ver equações 2 e 3).

2.2 VULNERABILIDADE

A vulnerabilidade pode ser compreendida como a propensão ou predisposição para ser afetado negativamente, sendo obtida em função da sensibilidade ou suscetibilidade a danos e da capacidade de adaptação, de outro modo, a falta de capacidade para lidar e adaptar-se (IPCC, 2014). Logo, para obtenção do nível de vulnerabilidade dos 21 portos públicos analisados, utilizou-se a seguinte equação:

 $Vulnerabilidade = Sensibilidade \times (1 - Capacidade adaptativa)$ [4]

Nota-se que quanto maior a capacidade adaptativa aos eventos associados à mudança do clima, menor será a sua vulnerabilidade. Assim, reforça-se que o investimento em medidas de adaptação torna o setor portuário mais resiliente às mudanças do clima.

Os valores do indicador de vulnerabilidade variam de 0 a 1, de acordo com as seguintes classes: muito baixa, baixa, média, alta, muito alta (Tabela 3). A partir disso, tem-se que os valores mais próximo de 1 indicam uma maior vulnerabilidade frente a uma determinada ameaça climática.

Tabela 3 – Escala do indicador de vulnerabilidade

Faixa	Classe
0 ≤ a < 0,2	Muito baixa
$0.2 \le a < 0.4$	Baixa
$0.4 \le a < 0.6$	Média

 $0.6 \le a < 0.8$ Alta $0.8 \le a \le 1$ Muito alta

2.2.1 Sensibilidade

A sensibilidade ou suscetibilidade representa o nível em que um sistema pode ser afetado pela variabilidade climática (IPCC, 2007). Ela pode ser medida por meio de indicadores socioeconômicos, demográficos, ambientais e infraestruturais que representam uma aproximação da sensibilidade de um determinado sistema frente aos fenômenos climáticos, evidenciando características que o tornam mais ou menos sensível a esses fenômenos.

No presente estudo, optou-se pela utilização dos indicadores infraestruturais e ambientais, com o objetivo de identificar quais características tornam a operação portuária mais predisposta a impactos devido à ocorrência de uma ameaça climática extrema.

Destaca-se que o nível de sensibilidade varia de acordo com a ameaça analisada. Isso porque as propriedades intrínsecas à operação portuária que fazem com que ocorra a sua paralisação devido às tempestades não necessariamente são as mesmas que poderiam causar a interrupção devido aos vendavais. Por exemplo, uma tempestade pode paralisar a operação de movimentação de carga vegetal de um porto, e não ter o potencial de prejudicar a movimentação de carga geral como um vendaval teria.

Α

Tabela 4 a seguir apresenta os indicadores que foram utilizados nas três ameaças climáticas analisadas. Nota-se que apenas o indicador definido como "tipo de carga movimentada" não foi utilizado para ameaça de aumento do nível do mar, uma vez que não se obteve dados que fundamentassem o quão sensível uma carga pode ser em relação ao aumento do nível do mar.

Tabela 4 - Indicadores utilizados para análise de sensibilidade às ameaças selecionadas

Indicador Ameaça	Tipo de carga movimentada	Condição área abrigada	Tipo de porto
Tempestade	Ø	•	⊘
Vendaval	②	Ø	②
AMN		②	

Como exposto acima, foram examinados, com exceção do aumento do nível do mar, três indicadores para a avaliação da sensibilidade dos portos em relação às ameaças analisadas: I) condição da área abrigada; II) tipo de porto e III) tipo de carga movimentada. Tais indicadores foram trabalhados separadamente e em seguida realizada a média entre eles para, assim, obter-se o nível de sensibilidade dos portos (Equação 5). O indicador varia de 0 a 1, em que quanto mais próximo de 1, maior a sensibilidade do porto frente a uma determinada ameaça climática.

$$Sensibilidade = M\'edia (Indicador_{TC}, Indicador_{CA}, Indicador_{TP})$$
 [5]

Em que *TC* representa o indicador "tipo de carga movimentada", *CA* reflete o indicador "condição da área abrigada" e, por último, *TP* que representa o indicador "tipo de porto".

Nas seções seguintes serão explicadas, em detalhes, as ponderações realizadas para obtenção do nível de sensibilidade frente a cada uma das ameaças climáticas analisadas.

2.2.1.1 Condição da Área Abrigada

A condição da área abrigada foi utilizada para estimar a integridade estrutural da área abrigada dos portos. Assim, utilizou-se o pressuposto de que a partir da classificação da área abrigada dos portos é possível compreender se essa área cumpre a função para a qual ela foi planejada, que consiste em proteger as operações portuárias dos ventos, mar e ondulação (NGA, 2019).

Os dados referentes à condição de área abrigada de cada um dos 21 portos públicos analisados foram obtidos por meio do *World Port Index* (WPI) da Agência Nacional de

Informação Geoespacial (do inglês *National Geospatial-Intelligence Agency*, NGA), o qual reúne uma série de informações referentes a localização, características físicas e serviços oferecidos pelos principais portos e terminais mundiais (NGA, 2021). Em geral, o WPI classifica os portos em cinco classes: muito boa, boa, média, ruim e não possui. A classe "não possui" é utilizada, no WPI, para os portos que não possuem área abrigada. Entretanto, nenhum dos portos públicos brasileiros analisados se enquadram nessa classificação. Além disso, faz-se importante ressaltar que o WPI não classificou a condição da área abrigada dos portos de Itaguaí e Fortaleza, sendo necessário o apoio de um especialista do setor portuário brasileiro para o enquadramento desses portos entre as classes.

Posteriormente ao levantamento da condição abrigada de cada porto analisado, foi efetuada uma atribuição de valores para as classes apontadas, resultando no seguinte: 0,2 - muito boa; 0,4 - boa; 0,6 - média; 0,8 - ruim; 1 - não possui. Evidencia-se que quanto melhor a condição da área abrigada, menos paralisações das operações ocorrerão. A Tabela 5 a seguir apresenta a condição da área abrigada dos portos públicos analisados:

Tabela 5 – Condição da área abrigada dos 21 portos públicos analisados

Porto	Condição da área abrigada
Angra dos Reis	Воа
Aratu-Candeias	Média
Cabedelo	Média
Fortaleza	Ruim
Ilhéus	Média
Imbituba	Ruim
Itaguaí	Boa
Itajaí	Boa
Itaqui	Boa
Natal	Boa
Niterói	Muito boa
Paranaguá	Boa
Recife	Média
Rio de Janeiro	Muito boa
Rio Grande	Boa
Salvador	Boa

Porto	Condição da área abrigada
Santos	Воа
São Francisco do Sul	Ruim
São Sebastião	Ruim
SUAPE	Boa
Vitória	Muito boa

Diferentemente dos outros indicadores selecionados na análise da sensibilidade, o indicador "condição da área abrigada" não variou entre as ameaças analisadas. Isso porque, além do WPI não fornecer subsídios para essa análise discriminada, a avaliação de como a condição da área abrigada interfere nos impactos adversos gerados pelas alterações climáticas envolve modelos matemáticos e modelos físicos de hidráulica marítima que requerem estudos e análises específicas. A título de exemplo, para os portos artificialmente abrigados seria necessário analisar a integridade atual das estruturas portuárias para atracação das embarcações em segurança, compreendendo o quanto essas infraestruturas estão realizando o seu papel fim. Enquanto para os portos naturalmente abrigados por um rio, lagoa, ilha e baía, seria necessário analisar se a condição atual desses ambientes garante a segurança das embarcações, e, consequentemente a regularidade das condições de operação.

2.2.1.2 Tipo de Porto

Os portos e as demais instalações portuárias são condicionados por uma série de fatores para exercerem a sua função como estruturas para trânsito de cargas que atuam como interface entre os transportes marítimo e terrestre, realizando a ligação inter e intracontinental. Uma dessas condições é a necessidade de águas tranquilas, as quais proporcionam a realização segura do transbordo e outros serviços relacionados à carga e à embarcação. Dessa forma, os portos estão localizados em áreas naturalmente abrigadas por baía, estuários, rios e lagoas, ou em ambientes que devem ser construídos estruturas de abrigo, como no caso dos que estão localizados em mar aberto (ANTAQ, 2021).

Segundo BRASIL (2006), o porto natural ou geográfico, aqui denominado como naturalmente abrigado, consiste no conjunto formado de água e terra, o qual reúne condições para embarque e desembarque de pessoas e bens. Já os portos artificiais são aqueles que dependem da interferência pública ou privada, para a realização de obras de aparelhamento com o intuito de permitir a melhor utilização das águas e da terra contígua.

Os portos, por necessidade, estão localizados em ambientes sensíveis e de alto risco frente às alterações da mudança do clima (BECKER et al., 2015). Assim, ao analisar a sensibilidade dos portos artificialmente e naturalmente abrigados frente às ameaças climáticas analisadas, buscou-se compreender como essas diferentes tipologias podem influenciar no aumento ou na redução dessa sensibilidade inerente à localização do setor portuário.

Izaguirre et al. (2021) em seu estudo "Climate change risk to global port operations" trabalha o elemento tipo de porto, retirado do WPI, como um fator da exposição. Entretanto, apesar do presente trabalho se basear no estudo para o desenvolvimento do indicador "tipo de porto", esse indicador será aqui tratado como um fator de sensibilidade, visto que ele é entendido como uma característica inerente a própria estrutura do porto.

Na mesma linha de Izaguirre et al. (2021), o presente projeto utilizou-se a tipologia apresentada pelo WPI, o qual basicamente categoriza os portos brasileiros da costa brasileira em naturalmente abrigados e artificialmente abrigados. Entretanto, como essa categorização é realizada a nível global e não considera as características peculiares dos portos brasileiros, foi necessário realizar um ajuste por meio de uma análise espacial e técnica (consulta com especialistas) a fim de se obter uma classificação que melhor representasse a realidade local.

Destaca-se que determinados portos podem ser enquadrados em mais de um tipo, por exemplo, em artificialmente abrigado e naturalmente abrigado, como é o caso do Porto de Salvador. Nesses casos, os portos foram classificados de acordo com a característica mais marcante, levando em consideração o que poderia torná-los mais ou menos sensíveis às ameaças climáticas analisadas. Além disso, realizou-se a

validação da classificação com os representantes do porto, garantindo-se assim adequação à realidade empírica.

Por fim, a partir do exposto por WPI (NGA,2019) e dos ajustes realizados, os 21 portos brasileiros foram classificados, de acordo com sua área abrigada, em:

- Naturalmente abrigado por uma ilha/baía: portos costeiros localizados dentro de uma baía ou perto de uma ilha;
- Naturalmente abrigado por um rio/lagoa: portos costeiros localizados dentro de um rio ou uma lagoa;
- Artificialmente abrigado: portos localizados atrás de um quebra-mar construído pelo homem para fornecer abrigo, ou para complementar o abrigo inadequado já fornecido por fontes naturais.

A Tabela 66 abaixo apresenta a classificação dos 21 portos analisados segundo NGA (2019), bem como a reclassificação após os ajustes e validação.

Tabela 66 - Classificação dos portos por tipo de área abrigada

Porto	Classificação WPI	Reclassificação
Angra dos Reis	Coastal Natural	Abrigado naturalmente por uma ilha
Aratu-Candeias	Open Roadstead	Abrigado naturalmente por uma baía
Cabedelo	River Natural	Abrigado naturalmente por um rio
Fortaleza	-	Artificialmente abrigado
Ilhéus	Coastal Breakwater	Artificialmente abrigado
Imbituba	Coastal Natural	Artificialmente abrigado
Itaguaí	-	Abrigado naturalmente por uma baía
Itajaí	River Natural	Abrigado naturalmente por um rio
Itaqui	Coastal Natural	Abrigado naturalmente por uma baía
Natal	River Natural	Abrigado naturalmente por um rio
Niterói	Coastal Natural	Abrigado naturalmente por uma baía
Paranaguá	Coastal Natural	Abrigado naturalmente por uma baía
Recife	Coastal Breakwater	Artificialmente abrigado
Rio de Janeiro	Coastal Natural	Abrigado naturalmente por uma baía
Rio Grande	River Natural	Abrigado naturalmente por uma lagoa
Salvador	Coastal Breakwater	Artificialmente abrigado
Santos	Coastal Natural	Abrigado naturalmente por um rio

Porto	Classificação WPI	Reclassificação
São Francisco do Sul	River Natural	Abrigado naturalmente por uma baía
São Sebastião	Open Roadstead	Abrigado naturalmente por uma ilha
SUAPE	Coastal Natural	Artificialmente abrigado
Vitória	River Natural	Abrigado naturalmente por uma baía

Fonte: Elaborado a partir de NGA (2019)

Após a reclassificação dos portos, analisou-se o nível de sensibilidade frente às tempestades, aos vendavais e ao aumento do nível do mar, de acordo com a tipologia portuária. A partir dessa análise, foram atribuídos valores de sensibilidade para os portos, resultando no seguinte: 0 - não sensível; 0,33 - baixa sensibilidade; 0,66 - média sensibilidade; 1- alta sensibilidade. Evidencia-se que a sensibilidade dos portos varia de acordo com a ameaça observada.

Em geral, as atribuições dos níveis de sensibilidade seguiram as seguintes condições para as ameaças de tempestades, vendavais e aumento do nível do mar:

- I. Tempestades: Nas zonas costeiras, o aumento na tendência de tempestades mais intensas propiciará condições que elevarão o risco de eventos como enxurradas, deslizamentos de terras e inundações nessas áreas (PBMC, 2016). Assim, visto os riscos secundários aos quais os portos estão sujeitos devido ao aumento da precipitação ao analisar o nível de sensibilidade do setor portuário às tempestades, levou-se em consideração a sensibilidade do setor às inundações;
- II. Vendavais: As alterações na velocidade ou direção dos ventos ocasionam diferentes impactos na área costeira. Como os ventos estão relacionados com a geração de ondas e com alterações no nível do mar, o seu aumento significa mais ondas ou marés meteorológicas, causando alterações no padrão dos processos sedimentares e, consequentemente, no balanço sedimentar costeiro. Além disso, os ventos promovem a formação de grandes vagas em alto mar, as quais originam ondas de tamanhos anormais na orla, também conhecidas como ressacas (PBMC, 2016). Dessa forma, na mesma linha da análise do nível de sensibilidade às tempestades, a análise referente aos vendavais também considerou os riscos secundários: ressacas e aumento das ondas;

III. Aumento do Nível do Mar: O aumento do nível do mar pode gerar uma série de consequências nas áreas costeiras do Brasil. Dentre as principais, tem-se as inundações costeiras, sujeitas ao aumento na sua frequência, intensidade e magnitude (PBMC, 2016). Assim, ao avaliar o nível de sensibilidade dos portos públicos da costa brasileira ao aumento do nível do mar, considerou-se a sensibilidade às inundações costeiras como um efeito secundário, mas que também pode gerar prejuízos para os portos.

A Tabela 77abaixo resume as considerações adotadas para a atribuição dos níveis de sensibilidade para cada um dos portos. Ressalta-se que as atribuições foram realizadas de forma comparativa. A título de exemplo, na ocorrência de um evento extremo, um porto naturalmente abrigado possui características intrínsecas que o torna mais sensível se comparado a um outro artificialmente abrigado.

Tabela 77 – Nível de sensibilidade a depender da tipologia portuária e da ameaça analisada

Ameaça	Tipo	Classe	Considerações
	Artificialmente abrigados Baixa		Dado que estão localizados em mar aberto, onde as águas das chuvas não encontram muitas barreiras para escoar, estes presensíveis aos efeitos secundários das chuvas, como as inundações capazes de gerar uma série de prejuízos para o setor port
Tempestade			Esse tipo de porto possui uma sensibilidade média às tempestades, em uma posição entre os artificialmente abrigados e abrigados por um rio ou uma lagoa. Isso porque, apesar da sua localização não ser tão abrigada se comparada aos portos lo rio ou uma lagoa, onde as águas ficam mais represadas, ainda existe a possibilidade da ocorrência de uma confluência de prejudicar os portos de alguma forma.
F	Naturalmente abrigados por um rio/lagoa	Alta	Estes portos estão localizados em ambientes sensíveis às tempestades, onde as águas estão mais represadas. Assim, na evento extremo de precipitação, toda a água que está em torno do porto é drenada para o interior da área do porto organizad inundações, e, consequentemente, prejuízos para os portos.
	Artificialmente abrigados	Média	A localização desses portos em mar aberto os coloca em um nível de sensibilidade maior se comparado aos demais, visto que um evento extremo de vento, esses portos não possuem proteção de uma barreira natural, podendo ser adversamente afetado pelos efeitos secundários, como por exemplo, pelo aumento das ondas.
Vendaval	Romania Romani	Baixa	Na ocorrência de um evento extremo de vento, os portos naturalmente abrigados por uma ilha e/ou baia podem estar mais prote secundários, como, por exemplo, o aumento das ondas no mar. Assim, consequentemente, terão menos prejuízos se comp localizados em outros ambientes mais sensíveis, como os portos em mar aberto.
>	Naturalmente abrigados Baixa por um rio/lagoa		Na mesma linha dos portos naturalmente abrigados por uma ilha/baía, os portos abrigados por um rio ou em uma lagoa e ambientes menos sensíveis aos vendavais se comparados com os artificialmente abrigados. No caso em questão, as á represadas, e, assim, na ocorrência de um evento extremo de vento esse tipo de porto é considerado menos sensível aos eficausados pelos vendavais.
AMN	Artificialmente abrigados	Baixa	Na ocorrência de um evento extremo de aumento do nível do mar, este tipo de porto é menos sensível se comparado aos den por estar localizado em mar aberto sem a proteção de uma barreira natural, ele pode ser adversamente afetado mais facilmo secundários causados pelo aumento do nível do mar, como por exemplo, as inundações.
4	Naturalmente abrigados por uma ilha/baía	Média	Localizados em uma ilha ou uma baía, onde as águas estão mais represadas, na ocorrência do aumento do nível do mar, as dificuldade de se distribuir ao longo da costa, e, consequentemente, irão causar mais inundações nessas regiões.

Ameaça	Tipo	Classe	Considerações
	Naturalmente abrigados		Na mesma linha dos portos abrigados por uma ilha/baía, estes portos encontram-se em ambientes onde as águas estão mais represadas, logo,
		Média	na ocorrência do aumento do nível do mar, as águas terão mais dificuldade de se distribuir ao longo da costa, e, consequentemente, irão causar
	por um rio/lagoa		mais inundações nessas regiões, tornando-os mais sensíveis a essa ameaça.

2.2.1.3 Tipo de Carga Movimentada

O tipo de carga movimentada por um porto caracteriza as suas operações, determinando as infraestruturas e equipamentos fundamentais para o seu funcionamento. Assim, ao utilizar esse indicador, buscou-se compreender como cada tipo de carga que o porto movimenta é mais ou menos sensível frente à ocorrência de tempestades e vendavais.

De acordo com a Agência Estadual de Notícias do Estado do Paraná (2021), a natureza dos grãos não permite a sua operação no caso de ocorrência de chuvas, e até mesmo em dias com o tempo úmido. Por outro lado, a agência aponta que a operação de cargas como contêineres, de veículos, de carga geral (com exceção de papéis e sacaria), sal e dos graneis líquidos é mantida durante as tempestades, uma vez que o contato da água da chuva com os materiais vegetais pode estragá-los. Nesse sentido, para o cálculo do tipo de carga sensível às tempestades analisou-se a porcentagem de carga vegetal entre as cargas gerais e sólidas em relação à carga total movimentada por cada porto analisado (Equação 6). Assim, parte-se do pressuposto que quanto maior a porcentagem de cargas vegetais no terminal portuário, mais susceptível ele estará ao risco de paralisações devido às tempestades.

$$Indicador_{TC} = \frac{Total(CV)}{Total(CM)} [6]$$

Em que *TC* indica tipo de carga, *Total CV* representa o total de carga vegetal movimentada pelos portos no período analisado e o *Total CM* indica a quantidade total de carga movimentada entre os anos de 2018 e 2020.

Em relação aos vendavais, analisou-se o tipo de carga que faz com que a operação portuária necessite da utilização de equipamentos de movimentação de cargas durante o seu carregamento e descarregamento. Isso porque, durante eventos extremos de vento, o manuseio de tais equipamentos é dificultado, e, em muitos casos, a depender da velocidade do vento, é necessária a paralisação da operação. Todas as cargas, com exceção dos granéis líquidos e gasosos que são operacionalizados por meio de tubulações e tanques fechados, demandam a utilização de equipamentos de

movimentação. Desse modo, o tipo de carga sensível aos vendavais foi obtido por meio da média da movimentação de contêineres, carga geral e granéis sólidos entre os anos de 2018 e 2020 (Equação 7).

$$Indicador_{TC} = M\'edia\ (CC, CG, GS)\ [7]$$

Em que CC representa as cargas conteneirizadas, CG indica a carga geral e, por fim, GS expressa os granéis sólidos.

Os dados de movimentação de carga para elaboração do indicador foram extraídos do anuário estatístico da ANTAQ, o qual disponibiliza informações estatísticas do setor aquaviário (APÊNDICE III).

2.2.2 Capacidade Adaptativa

De acordo com o IPCC (2014), a capacidade adaptativa compreende a habilidade dos sistemas, instituições, seres humanos e outros organismos de ajustar a possíveis danos, de saber aproveitar as oportunidades ou de responder às consequências. FRITZSCHE *et al.* (2014) aponta que as dimensões chaves da capacidade adaptativa são: conhecimento, tecnologia, instituições e organizações, e economia.

O indicador de capacidade adaptativa foi desenvolvido a partir do levantamento de informações relacionadas a medidas estruturais e não estruturais (medidas de gestão) que os portos já adotam. As medidas estruturais envolvem obras de engenharia para correção e/ou prevenção de desastres. Já as medidas não estruturais visam reduzir o desastre por meio de gestão administrativa, normas, regulamentações ou programas. Assim, parte-se do pressuposto de que a adoção de tais medidas torna os portos mais preparados para enfrentar os efeitos das mudanças do clima.

Os dados das medidas estruturais e não estruturais dos 21 portos públicos analisados foram extraídos do questionário eletrônico já apresentado no P2 - Impactos do clima no setor portuário da costa brasileira. Para cada uma das ameaças analisadas foram selecionadas as medidas capazes de aumentar a capacidade adaptativa dos portos frente a elas, e, consequentemente reduzir a vulnerabilidade deles.

Tendo em vista que cada medida adaptativa exerce uma influência distinta no aumento da capacidade adaptativa dos portos frente a uma determinada ameaça climática, foi necessário a adoção de pesos a fim de se ponderar as medidas mais relevantes. Os pesos foram elaborados por meio da utilização do Método Delphi¹, durante o 2º Workshop "Apresentação dos Resultados do Formulário e Definição dos Pesos dos Indicadores de Risco", realizado no dia 26 de novembro de 2020. Nesse workshop, todos os representantes portuários presentes votaram, em uma escala de 0 a 5, quais medidas eles acreditavam ser mais relevantes para a capacidade adaptativa dos portos. Ressalta-se que todas as medidas não estruturais (medidas de gestão) foram consideradas em conjunto, recebendo, portanto, o mesmo peso.

Após a seleção das medidas adaptativas e a adoção de pesos, utilizou-se a média ponderada para calcular a capacidade adaptativa dos portos (Equação 8). Ressalta-se que todos os indicadores foram reescalonados entre 0 e 1 para serem comparáveis.

Capacidade Adapativa =
$$\frac{\rho_1.X_1 + \rho_2.X_2 + \cdots \rho_n.X_n}{\rho_1 + \rho_2 + \cdots \rho_n} [8]$$

Em que:

 $\rho_{n:}$ peso

Xn: indicador referente a medida adaptativa

O cálculo do indicador da capacidade adaptativa resultou em valores de 0 a 1, os quais foram, posteriormente, classificados em: muito baixa, baixa, média, alta, muito alta. A partir dessa classificação tem-se que quanto mais próximo de 1, maior a capacidade adaptativa do porto frente a uma determinada ameaça climática.

As Tabela 8 89 e 10 abaixo apresentam as medidas de capacidade adaptativa consideradas, assim como os pesos apontados pelos portos.

¹ O método se baseia na construção de um consenso que envolve a solicitação da opinião de diferentes profissionais com diferentes áreas de especialização sobre uma questão específica com o objetivo de hierarquização (ponderação) das variáveis.

Tabela 8 8- Indicadores utilizados na elaboração do indicador de capacidade adaptativa às tempestades

Medidas	Indicadores	Peso
	Registros de impactos	0,7
	Planos de ação emergencial	0,7
<u> </u>	Comitê de crise	0,7
estão	Monitoramento Meteorológico	0,7
) (Ge	Aborda mudanças climáticas no plano estratégico	0,7
turais	Planejamento específico para mudanças do clima	0,7
sstrut	Inclusão da adaptação no orçamento	0,7
Não estruturais (Gestão)	Atualização de diretrizes de projetos de engenharia para atender os novos padrões climáticos	0,7
	Possui seguro contra mudanças do clima	0,7
	Reuniões regulares para discutir adaptação	0,7
a. S	Acessos alternativos	0,5
Estruturais	Existência de VTMS	0,7
Estı	Sistema de drenagem	0,8

Tabela 99 - Indicadores utilizados na elaboração do indicador de capacidade adaptativa aos vendavais

Medidas	Indicadores	Peso			
	Registros de impactos	0,8			
	Planos de ação emergencial	0,8			
<u> </u>	Comitê de crise	0,8			
əstãc	Monitoramento Meteorológico	0,8			
s (Ge	Aborda mudanças climáticas no plano estratégico	0,8			
turai	Planejamento específico para mudanças do clima	0,8			
stru	Inclusão da adaptação no orçamento				
Não estruturais (Gestão)	Atualização de diretrizes de projetos de engenharia para atender os novos padrões climáticos				
	Possui seguro contra mudanças do clima	0,8			
	Reuniões regulares para discutir adaptação	8,0			
	Monitoramento de rajada de vento				
rai ut	Acessos alternativos	0,5			

Medidas		Indicadores	Peso
	Existência de VTMS		0,7

Tabela 1010 - Indicadores utilizados na elaboração do indicador de capacidade adaptativa ao aumento do nível do mar

Medidas	Indicadores	Peso
	Registros de impactos	0,8
	Planos de ação emergencial	0,8
<u> </u>	Comitê de crise	0,8
estão	Monitoramento Meteorológicos	0,8
9) (G	Aborda mudanças climáticas no plano estratégico	0,8
turais	Planejamento específico para mudanças do clima	0,8
stru	Inclusão da adaptação no orçamento	
Não estruturais (Gestão)	Atualização de diretrizes de projetos de engenharia para atender os novos padrões climáticos	0,8
	Possui seguro contra mudanças do clima	0,8
	Reuniões regulares para discutir adaptação	0,8

3 RESULTADOS E ANÁLISES

3.1 INDICADOR DE EXPOSIÇÃO

A exposição dos 21 portos públicos analisados em relação às tempestades, vendavais e aumento do nível do mar é representada pelos indicadores intermediários: número de infraestruturas e movimentação de carga anual. O indicador intermediário "número de infraestruturas", diferentemente da "movimentação de carga anual", varia a depender da ameaça analisada devido ao fator de localização geográfica. Uma vez que a exposição envolve a presença de infraestruturas em locais que possam ser adversamente afetados por uma determinada ameaça, tem-se que nem todas as infraestruturas portuárias localizam-se em ambientes que as expõem às ameaças climáticas analisadas.

As Tabelas 11, 12 e 13 apresentam os resultados dos indicadores de exposição dos portos frente às ameaças analisadas, bem como os resultados dos indicadores intermediários. Esses resultados derivam da aplicação das equações apresentadas na seção da metodologia. Os resultados absolutos dos indicadores intermediários podem ser encontrados no APÊNDICE I.

Tabela 11 11 - Indicador de exposição às tempestades

Porto	Número de infraestruturas	Movimentação de carga anual	Indicador
Angra dos Reis	0,582	0,344	0,463
Aratu-Candeias	0,800	0,846	0,823
Cabedelo	0,589	0,755	0,672
Fortaleza	0,496	0,832	0,664
Ilhéus	0,422	0,664	0,543
Imbituba	0,483	0,840	0,662
Itaguaí	0,553	0,956	0,755
Itajaí	0,378	0,835	0,606
Itaqui	0,750	0,919	0,835
Natal	0,609	0,728	0,669
Niterói	0,365	0,559	0,462
Paranaguá	0,881	0,957	0,919

Porto		ero de I truturas	Movimentação de carga anual	Indicador
Recife	0,0	639	0,761	0,700
Rio de Janeiro	0,	778	0,852	0,815
Rio Grande	0,9	910	0,906	0,908
Salvador	0,	532	0,834	0,683
Santos	1,0	000	1,000	1,000
São Francisco do Sul 0,440		440	0,878	0,659
São Sebastião	0,4	463	0,731	0,597
SUAPE	0,8	801	0,919	0,860
Vitória	0,0	665	0,851	0,758
Muito baixa	Baixa	Média	Alta	Muito alta
0 – 0,2	0,2-0,4	0,4 – 0,6	0,6 – 0,8	0,8 - 1

Tabela 12 12- Indicador de exposição aos vendavais

Porto		ero de M truturas	lovimentação de carga anual	Indicador
Angra dos Reis	0,	585	0,344	0,464
Aratu-Candeias	0,	805	0,846	0,825
Cabedelo	0,	588	0,755	0,672
Fortaleza	0,	370	0,832	0,601
Ilhéus	0,	384	0,664	0,524
Imbituba	0,	438	0,840	0,639
Itaguaí	0,	520	0,956	0,738
Itajaí	0,	277	0,835	0,556
Itaqui	0,	754	0,919	0,837
Natal	0,	604	0,728	0,666
Niterói	0,	321	0,559	0,440
Paranaguá	0,	884	0,957	0,921
Recife	0,	616	0,761	0,689
Rio de Janeiro	0,	758	0,852	0,805
Rio Grande	0,	915	0,906	0,911
Salvador	0,	470	0,834	0,652
Santos	1,	000	1,000	1,000
São Francisco do	Sul 0,	356	0,878	0,617
São Sebastião	0,	418	0,731	0,574
SUAPE 0,798		798	0,919	0,858
Vitória 0		649	0,851	0,750
Muito baixa	Baixa	Média	Alta	Muito alta
0 – 0,2	0,2 - 0,4	0,4 – 0,6	0,6 – 0,8	0,8 - 1

Tabela 1313 - Indicador de exposição ao aumento do nível do mar

Porto		ero de truturas	Movimentação de carga anual	Indicador	
Angra dos Reis	0,	600	0,344	0,472	
Aratu-Candeias	0,	822	0,846	0,834	
Cabedelo	0,	610	0,755	0,683	
Fortaleza	0,	501	0,832	0,666	
Ilhéus	0,	416	0,664	0,540	
Imbituba	0,	501	0,840	0,670	
Itaguaí	0,	494	0,956	0,725	
Itajaí	0,	328	0,835	0,581	
Itaqui	0,	769	0,919	0,844	
Natal	0,0	628	0,728	0,678	
Niterói	0,3	0,253 0,559		0,406	
Paranaguá	0,	897	0,957	0,927	
Recife	0,	647	0,761	0,704	
Rio de Janeiro	0,728		0,852	0,790	
Rio Grande	0,	924	0,906	0,915	
Salvador	0,4	494	0,834	0,664	
Santos	1,	000	1,000	1,000	
São Francisco de	o Sul 0,	155 0,878		0,667	
São Sebastião	0,	391	0,731	0,561	
SUAPE	0,	807	0,919	0,863	
Vitória	0,	669	0,851	0,760	
Muito baixa	Baixa	Média	Alta	Muito alta	
0 – 0,2	0,2 - 0,4	0,4 – 0,6	0,6 - 0,8	0,8 - 1	

A partir da análise das tabelas acima, identifica-se que para todas as ameaças analisadas os portos de Aratu-Candeias, Itaqui, Paranaguá, Rio Grande, Santos, SUAPE apresentam indicador de exposição classificado como "muito alta". Tal resultado é consequência dos valores dos indicadores intermediários, tendo uma influência maior, na maioria dos casos, do indicador de movimentação de carga anual. Dentre esses portos, o Porto de Santos se sobressai, possuindo uma exposição máxima para todas as ameaças analisadas, em virtude da elevada movimentação de carga anual e do elevado número de infraestruturas portuárias que revelam a dimensão do maior porto da América Latina.

Nota-se que apenas os portos do Rio de Janeiro e Itajaí não mantiveram o nível de exposição constante para as três ameaças analisadas. O Porto do Rio de Janeiro passa de uma classificação de exposição "muito alta" para as ameaças de tempestades e vendavais para uma classificação "alta" para o aumento do nível do mar. Isso se deve

a não consideração dos equipamentos de movimentação de carga como infraestruturas portuárias expostas a essa ameaça, resultando na diminuição do indicador de infraestruturas portuárias, e, consequentemente no nível de exposição (APÊNDICE I). Já o Porto de Itajaí, apesar de possuir uma movimentação de carga anual considerável, possui indicador intermediário "número de infraestruturas portuárias" que reduz significativamente o indicador final de exposição, principalmente no que diz respeito às ameaças de vendavais e aumento do nível do mar.

É interessante observar que o nível de exposição dos portos varia entre "média" a "muito alta", não havendo nenhum caso de exposição "muito baixa" ou "baixa". Esse resultado converge com os expostos por PBMC (2016) & Izaguirre et al. (2021) os quais apontam que a localização do setor portuário, ao longo da costa, rios ou lagos, faz com que possua uma elevada exposição a uma grande variedade de ameaças que incluem elevação do nível do mar, inundações, mudanças na frequência e intensidade de tempestades e aumento da precipitação e temperatura da superfície do mar.

3.2 INDICADOR DE VULNERABILIDADE

Nesta seção, apresenta-se os resultados do indicador de vulnerabilidade às tempestades, aos vendavais e ao aumento do nível do mar, os quais derivam da análise realizada da sensibilidade em conjunto com a capacidade adaptativa (Ver equação 4).

3.2.1 Tempestades

A Tabela 14Tabela 1414 apresenta os dados referentes ao indicador de vulnerabilidade às tempestades, assim como os resultados dos indicadores de sensibilidade e capacidade adaptativa que o compõe.

Tabela 1414 - Indicador de vulnerabilidade as tempestades

Porto	Sensibilidade	Capacidade adaptativa	Indicador
Angra dos Reis	0,353	0,057	0,333
Aratu-Candeias	0,520	0,085	0,476
Cabedelo	0,642	0,132	0,558
Fortaleza	0,474	0,010	0,469
Ilhéus	0,402	0,075	0,372
Imbituba	0,541	0,041	0,519
Itaguaí	0,354	0,139	0,305

Porto	Son	sibilidade	Capacidade	Indicador
FOILO	Sell	sibiliuaue	adaptativa	mulcauoi
Itajaí		0,467	0,411	0,275
Itaqui		0,558	0,499	0,280
Natal		0,612	0,212	0,482
Niterói		0,287	0,021	0,281
Paranaguá		0,598	0,373	0,375
Recife		0,516	0,166	0,430
Rio de Janeiro		0,314	0,021	0,307
Rio Grande		0,703	0,080	0,647
Salvador		0,272	0,021	0,267
Santos		0,581	0,453	0,318
São Francisco	do Sul	0,649	0,057	0,612
São Sebastião		0,526	0,078	0,485
SUAPE		0,251	0,005	0,249
Vitória		0,369	0,290	0,262
Muito Baixa	Baixa	Média	Alta	Muito Alta
0 – 0,2	0,2 - 0,4	0,4 - 0,6	0,6 – 0,8	0,8 – 1,0

A partir da análise da tabela acima, observa-se que os portos de Rio Grande e São Francisco do Sul são os mais vulneráveis às tempestades, possuindo uma classificação denominada como "alta". Para compreender esse resultado é importante desagregar as variáveis consideradas, isto é, avaliar os indicadores de sensibilidade e capacidade adaptativa.

Para ambos os portos a vulnerabilidade elevada deriva do indicador de sensibilidade, que apresentou resultados superiores ao indicador de capacidade adaptativa, exercendo, portanto, maior influência na vulnerabilidade. Ao analisar os indicadores intermediários que compõe o indicador de sensibilidade, nota-se que enquanto o porto de Rio Grande é mais influenciado pelo indicador "tipo de carga", o porto de São Francisco do Sul é influenciado pela "condição da área abrigada" (Tabela 15 15Isso significa que a elevada movimentação de carga vegetal do porto de Rio Grande é o fator responsável por posicioná-lo em uma situação de maior probabilidade de paralisações na operação devido às tempestades, ao passo que no porto de São Francisco do Sul, a condição da área abrigada é o fator preponderante para possíveis paralisações devido a essa ameaça.

Tabela 15 15- Indicador de sensibilidade às tempestades

Porto	Tipo de Carga	Condição da Área Abrigada	Tipo de Porto	Indicador
Angra dos Reis	0,00	0,40	0,66	0,353
Aratu-Candeias	0,30	0,60	0,66	0,520
Cabedelo	0,33	0,60	1,0	0,642
Fortaleza	0,29	0,80	0,33	0,474
Ilhéus	0,28	0,60	0,33	0,402
Imbituba	0,49	0,80	0,33	0,541
Itaguaí	0,00	0,40	0,66	0,354
Itajaí	0,00	0,40	1,0	0,467
Itaqui	0,61	0,40	0,66	0,558
Natal	0,44	0,40	1,0	0,612
Niterói	0,00	0,20	0,66	0,287
Paranaguá	0,74	0,40	0,66	0,598
Recife	0,62	0,60	0,33	0,516
Rio de Janeiro	0,08	0,20	0,66	0,314
Rio Grande	0,71	0,40	1,0	0,703
Salvador	0,09	0,40	0,33	0,272
Santos	0,34	0,40	1,0	0,581
São Francisco do Sul	0,49	0,80	0,66	0,649
São Sebastião	0,12	0,80	0,66	0,526
SUAPE	0,02	0,40	0,33	0,251
Vitória	0,25	0,20	0,66	0,369
Muito Baixa	Baixa	Média	Alta	Muito Alta
0 – 0,2	0,2 - 0,4	0,4 - 0,6	0,6 - 0,8	0,8 – 1,0

Ainda em relação à sensibilidade, verifica-se que os portos de Cabedelo, Natal, Rio Grande e São Francisco do Sul possuem a mesma classificação da sensibilidade. Entretanto, os dois primeiros não possuem, como os demais, a vulnerabilidade "alta", visto que apresentam capacidade adaptativa maior que os demais (Tabela 1616.

Tabela 1616 - Indicador de capacidade adaptativas às tempestades

Porto	Não estrutural	Estrutural	Indicador
Angra dos Reis	0,06	0,00	0,057
Aratu-Candeias	0,03	0,06	0,085
Cabedelo	0,07	0,06	0,132
Fortaleza	0,01	0,00	0,010
Ilhéus	0,02	0,06	0,075
Imbituba	0,04	0,00	0,041
Itaguaí	0,02	0,12	0,139
Itajaí	0,23	0,18	0,411
Itaqui	0,11	0,39	0,499
Natal	0,09	0,12	0,212
Niterói	0,02	0,00	0,021

Porto	N	ão estrutural	Estrutural	Indicador
Paranaguá		0,10	0,27	0,373
Recife		0,01	0,16	0,166
Rio de Janeiro		0,02	0,00	0,021
Rio Grande		0,02	0,06	0,080
Salvador		0,02	0,00	0,021
Santos		0,07	0,39	0,453
São Francisco do Sul		0,06	0,00	0,057
São Sebastião		0,08	0,00	0,078
SUAPE		0,01	0,00	0,005
Vitória		0,03	0,26	0,290
Muito Baixa	Baixa	Média	Alta	Muito Alta
0 – 0,2	0.2 - 0.4	0,4 - 0,6	0,6 - 0,8	0,8 – 1,0

A partir dos resultados, observa-se que nenhum dos 21 portos públicos analisados possuem uma capacidade adaptativa classificada como "alta" ou "muito alta". Os portos de Itajaí, Itaqui e Santos possuem uma melhor classificação, sendo resultado do investimento, por parte de tais portos, em medidas estruturais e não estruturais relevantes para o enfrentamento de eventos extremos de chuva.

Os resultados apresentados na Tabela 1616para os portos de São Francisco do Sul e Rio Grande, em conjunto com a análise da sensibilidade, auxiliam na compreensão do resultado da vulnerabilidade elevada. Nota-se que esses dois portos apresentaram uma capacidade adaptativa classificada como "muito baixa", o que indica que eles não possuem medidas estruturais e não estruturais suficientes para o enfrentamento de eventos extremos de chuva.

Por fim, é interessante mencionar que tanto o Porto de São Francisco do Sul quanto o Porto de Rio Grande apontaram no questionário eletrônico enviado e apresentado no P2, que já sofreram impactos na operação portuária devido às tempestades, classificados em "moderado" e "severo", respectivamente. Isso significa que o Porto de São Francisco do Sul já presenciou a interrupção parcial/pontual de uma atividade, enquanto o Porto de Rio Grande presenciou parada total nas suas operações portuárias por um curto período. Essa situação corrobora os resultados da vulnerabilidade desses dois portos.

3.2.2 Vendavais

A Tabela 1717apresenta os dados do indicador de vulnerabilidade aos vendavais, assim como dos indicadores de sensibilidade e capacidade adaptativa dos 21 portos públicos analisados.

Tabela 1717 - Indicador de vulnerabilidade aos vendavais

Porto	Sensibilidade	Capacidade adaptativa		Indicador	
Angra dos Reis	0,577	0,095			0,522
Aratu-Candeias	0,403	0,029			0,391
Cabedelo	0,516	0,09	95		0,467
Fortaleza	0,650	0,05	8		0,612
Ilhéus	0,753	0,02	22		0,737
Imbituba	0,816	0,06	35		0,763
Itaguaí	0,576	0,02	29		0,560
Itajaí	0,577	0,32	27		0,388
Itaqui	0,481	0,32	27		0,323
Natal	0,577	0,153			0,489
Niterói	0,510	0,022			0,499
Paranaguá	0,554	0,178			0,456
Recife	0,752	0,015			0,741
Rio de Janeiro	0,500	0,022			0,489
Rio Grande	0,522	0,058			0,492
Salvador	0,687	0,022			0,672
Santos	0,535	0,102			0,480
São Francisco do Sul	0,710	0,116			0,627
São Sebastião	0,707	0,145			0,605
SUAPE	0,438	0,080			0,403
Vitória	0,473	0,465			0,253
Muito Baixa	Baixa	Média	Alta	1	Muito
0 – 0,2	0,2 - 0,4	0,4 - 0,6	,4 – 0,6 0,6 – 0,8		0,8 – 1,0

A partir dos resultados acima, identifica-se 7 portos com alta vulnerabilidade à ameaça

de vendavais, sendo eles: Fortaleza, Ilhéus, Imbituba, Recife, Salvador, São Francisco do Sul e São Sebastião. No intuito de compreender a elevada vulnerabilidade desses portos, deve ser realizado o detalhamento dos indicadores que a compõe.

Em uma análise minuciosa das causas para o resultado de vulnerabilidade obtido, identifica-se que a sensibilidade foi a componente responsável por tal resultado, dado

que todos os portos com alta vulnerabilidade possuem sensibilidade definida como "muito alta" ou "alta", e capacidade adaptativa classificada como "muito baixa" (Tabela 1818e

Tabela 1919. Ressalta-se que o resultado do indicador da sensibilidade e da capacidade adaptativa são influenciados por todos os indicadores intermediários que os compõe de formas diferenciadas. Em relação ao resultado da sensibilidade, por exemplo, os indicadores intermediários que mais exerceram influência foram o "tipo de carga" e o "condição da área abrigada". Esse último prevaleceu apenas no porto de Fortaleza.

Tabela 1818 - Indicador de sensibilidade aos vendavais

Porto	Tine de Carre	Condição da Área	Tipo de	Indicador
Porto	Tipo de Carga	Abrigada	Porto	indicador
Angra dos Reis	1,00	0,40	0,33	0,577
Aratu-Candeias	0,28	0,60	0,33	0,403
Cabedelo	0,62	0,60	0,33	0,516
Fortaleza	0,49	0,80	0,66	0,650
Ilhéus	1,00	0,60	0,66	0,753
Imbituba	0,99	0,80	0,66	0,816
Itaguaí	1,00	0,40	0,33	0,576
Itajaí	1,00	0,40	0,33	0,577
Itaqui	0,71	0,40	0,33	0,481
Natal	1,00	0,40	0,33	0,577
Niterói	1,00	0,20	0,33	0,510
Paranaguá	0,93	0,40	0,33	0,554
Recife	1,00	0,60	0,66	0,752
Rio de Janeiro	0,97	0,20	0,33	0,500
Rio Grande	0,84	0,40	0,33	0,522
Salvador	1,00	0,40	0,66	0,687
Santos	0,87	0,40	0,33	0,535
São Francisco do Sul	1,00	0,80	0,33	0,710
São Sebastião	0,99	0,80	0,33	0,707
SUAPE	0,26	0,40	0,66	0,438
Vitória	0,89	0,20	0,33	0,473
Muito Baixa	Baixa	Média	Alta	Muito Alta
0 – 0,2	0,2 - 0,4	0,4 - 0,6	0,6 - 0,8	0,8 – 1,0

Tabela 1919 - Indicador de capacidade adaptativa aos vendavais

Porto	Não estrutural	Estrutural	Indicador
Angra dos Reis	0,09	0,00	0,095
Aratu-Candeias	0,03	0,00	0,029
Cabedelo	0,09	0,00	0,095
Fortaleza	0,06	0,00	0,058

Porto	N	ão estrutural	Estrutural	Indicador
Ilhéus		0,02	0,00	0,022
Imbituba		0,07	0,00	0,065
Itaguaí		0,03	0,00	0,029
Itajaí		0,33	0,00	0,327
Itaqui		0,17	0,16	0,327
Natal		0,15	0,00	0,153
Niterói		0,02	0,00	0,022
Paranaguá		0,14	0,04	0,178
Recife		0,01	0,00	0,015
Rio de Janeiro		0,02	0,00	0,022
Rio Grande		0,06	0,00	0,058
Salvador		0,02	0,00	0,022
Santos		0,10	0,00	0,102
São Francisco do Sul		0,12	0,00	0,116
São Sebastião		0,15	0,00	0,145
SUAPE		0,08	0,00	0,080
Vitória		0,07	0,40	0,465
Muito Baixa	Baixa	Média	Alta	Muito Alta
0 – 0,2	0,2 - 0,4	0,4 - 0,6	0,6 - 0,8	0,8 – 1,0

O indicador de capacidade adaptativa aos vendavais revela que todos os portos que obtiveram uma vulnerabilidade elevada, obtiveram uma classificação "muito baixa". Esse resultado é reflexo da falta de medidas estruturais e não estruturais que aumentem a resiliência das operações portuárias frente aos eventos extremos de vento. Nota-se ainda que, de maneira semelhante as tempestades, há uma baixa adesão a medidas estruturais no quesito de capacidade adaptativa frente a ameaça de vendavais, evidenciada pelo fato de apenas três portos apresentarem medidas desse tipo.

Ao comparar os resultados dos portos que obtiveram vulnerabilidade classificada como "alta", com as respostas deles em relação aos impactos causados pelos vendavais, apresentados anteriormente no P2 deste projeto, ressalta-se que todos eles, com exceção do porto de São Sebastião, disseram ter sofrido impactos nas suas operações devido a eventos extremos de vento.

3.2.3 Aumento do Nível do Mar

Na Tabela 2020 abaixo serão apresentados os dados referentes ao indicador de vulnerabilidade ao aumento do nível do mar, bem como dos indicadores que o compõe: sensibilidade e capacidade adaptativa.

Tabela 2020 - Indicador de vulnerabilidade ao aumento do nível do mar

Porto	Sei	nsibilidade		acidade ptativa	Indicador
Angra dos Reis	3	0,530	0	,120	0,466
Aratu-Candeia	3	0,630	0	,080	0,580
Cabedelo		0,630	0	,280	0,454
Fortaleza		0,565	0	,000	0,565
Ilhéus		0,465	0	,040	0,446
Imbituba		0,565	0	,100	0,509
Itaguaí		0,530	0	,080	0,488
Itajaí		0,530	0	,800	0,106
Itaqui	taqui		0,530 0,500		0,265
Natal		0,530	0	,440	0,297
Niterói		0,430	0	,000	0,430
Paranaguá		0,530	0	,180	0,435
Recife		0,465	0	,060	0,437
Rio de Janeiro		0,430	0	,000	0,430
Rio Grande		0,530	0	,040	0,509
Salvador		0,365	0	,060	0,343
Santos		0,530	0	,260	0,392
São Francisco	do Sul	0,730	0	,200	0,584
São Sebastião		0,730	0	,200	0,584
SUAPE	IAPE		0	,120	0,321
Vitória		0,430	0	,120	0,378
Muito Baixa	Baixa	Médi	а	Alta	Muito Alta
0 – 0,2	0,2-0,4	0,4 – 0),6	0,6 - 0,8	0,8 – 1,0

A partir dos resultados acima, identifica-se que nenhum porto público analisado no escopo deste estudo possui uma vulnerabilidade "muito alta" ou "alta" frente à ameaça de aumento do nível do mar. A maior parte dos portos analisados, 14 de 21, foram classificados com uma vulnerabilidade "média", sendo eles: Angra dos Reis, Aratu-Candeias, Cabedelo, Fortaleza, Ilhéus, Imbituba, Itaguaí, Niterói, Paranaguá, Recife, Rio de janeiro, Rio Grande, São Francisco do Sul e São Sebastião.

Dentre os 21 portos analisados, é interessante destacar o resultado do porto de Itajaí, dado que apenas ele obteve uma vulnerabilidade classificada como "muito baixa". Essa classificação é reflexo do valor do indicador de capacidade adaptativa, que foi maior do que o indicador de sensibilidade. A Tabela 2121abaixo fundamenta melhor esse resultado.

Tabela 2121 - Indicador de capacidade adaptativa ao aumento do nível do mar

Port	0	Não es	trutural	Indicador
Angra dos R	eis	0,12		0,120
Aratu-Cande	Aratu-Candeias		08	0,080
Cabedelo		0,:	28	0,280
Fortaleza		0,0	00	0,000
Ilhéus		0,0	04	0,040
Imbituba		0,:	10	0,100
Itaguaí		0,0	08	0,080
Itajaí		0,	80	0,800
Itaqui	Itaqui		0,50	
Natal	Natal		0,44	
Niterói	Niterói		0,00	
Paranaguá	Paranaguá		0,18	
Recife		0,0	06	0,060
Rio de Janeiro		0,0	00	0,000
Rio Grande		0,04		0,040
Salvador		0,06		0,060
Santos		0,26		0,260
São Francisc	São Francisco do Sul		0,20	
São Sebastião		0,20		0,200
SUAPE		0,12		0,120
Vitória		0,12		0,120
Muito Baixa	Baixa	Média	Alta	Muito Alta
0 – 0,2	0,2-0,4	0,4 - 0,6	0,6 - 0,8	0,8 – 1,0

Nota-se que o Porto de Itajaí foi o único que apresentou um indicador de capacidade adaptativa frente ao aumento do nível do mar classificado como "muito alta". Esse resultado indica o sucesso do porto na adoção de medidas não estruturais para o enfrentamento do aumento do nível do mar. Dentre as 10 medidas não estruturais levantadas no presente estudo, apenas duas o porto de Itajaí afirmou não possuir, sendo elas: seguro específico contra as mudanças do clima e planos de ação emergencial/protocolo de evacuação em relação ao aumento do nível do mar.

Ressalta-se que o resultado da capacidade adaptativa para o porto de Itajaí já era esperado visto que o porto já vem adotando uma série de medidas adaptativas para tornar a operação portuária mais resiliente às mudanças do clima. O porto inclusive já realizou um estudo intitulado como "Levantamento de Risco Climático para o Porto de Itajaí/SC", no ano de 2021, desenvolvido pela Ekta Consultoria Soluções Ambientais com a assessoria técnica da Agência Alemã de Cooperação Internacional (GIZ) juntamente com outros órgãos, no qual foram levantados os riscos climáticos atuais e futuros.

Em relação à sensibilidade, nota-se que os portos de Itajaí, Itaqui e Natal possuem sensibilidade igual a de outros portos classificados com vulnerabilidade "média". Todavia, para os três portos a vulnerabilidade é definida como "muito baixa" ou "baixa". A explicação para este resultado é obtida a partir da análise dos resultados expostos na Tabela 2222, os quais demonstram que possuem a maior capacidade adaptativa entre os portos analisados, consequentemente, reduzindo a vulnerabilidade do porto frente à ameaça de aumento do nível do mar.

Tabela 2222 - Indicador de sensibilidade ao aumento do nível do mar

Porto	Condição da	Tino de Doute	Indicador
Porto	Área Abrigada	Tipo de Porto	indicador
Angra dos Reis	0,40	0,66	0,530
Aratu-Candeias	0,60	0,66	0,630
Cabedelo	0,60	0,66	0,630
Fortaleza	0,80	0,33	0,565
Ilhéus	0,60	0,33	0,465
Imbituba	0,80	0,33	0,565
Itaguaí	0,40	0,66	0,530
Itajaí	0,40	0,66	0,530
Itaqui	0,40	0,66	0,530
Natal	0,40	0,66	0,530
Niterói	0,20	0,66	0,430
Paranaguá	0,40	0,66	0,530
Recife	0,60	0,33	0,465
Rio de Janeiro	0,20	0,66	0,430
Rio Grande	0,40	0,66	0,530
Salvador	0,40	0,33	0,365
Santos	0,40	0,66	0,530
São Francisco do Sul	0,80	0,66	0,730
São Sebastião	0,80	0,66	0,730
SUAPE	0,40	0,33	0,365
Vitória	0,20	0,66	0,430

Porto		lição da Tipo Abrigada	o de Porto	Indicador
Muito Baixa	Baixa	Média	Alta	Muito Alta
0 – 0,2	0,2 - 0,4	0,4 - 0,6	0,6 - 0,8	0,8 – 1,0

É interessante apontar que, diferentemente das outras ameaças analisadas, para o aumento do nível do mar não foram obtidos relatos dos portos sobre o seu impacto na operação da atividade portuária. Em geral, isso ocorre em virtude de o impacto dessa ameaça no setor portuário brasileiro ser vislumbrado principalmente em cenários projetados, sendo pouco perceptível e mensurável na atividade portuária atual. Essa lacuna na percepção, faz com que haja pouco investimento em obras preventivas. Segundo Ng et al. (2018), há muitas razões pelas quais um porto pode querer adiar o investimento em medidas proativas, especialmente quando se trata da proteção contra eventos de baixa probabilidade e alto impacto. Em relação à elevação do nível do mar, por exemplo, os autores apontam que essa falta de planejamento se deve aos efeitos incrementais dessa ameaça e à incerteza na taxa de elevação.

4 CONSIDERAÇÕES FINAIS E PRÓXIMOS PASSOS

O presente relatório (P4) apresentou como os portos brasileiros costeiros estão expostos à mudança do clima e o quão vulneráveis eles estão considerando o que os torna sensíveis e capazes de se adaptar.

A exposição e a vulnerabilidade do setor portuário são influenciadas por uma série de fatores que foram apresentados em detalhes ao longo deste estudo. Como uma forma de sumarizar os principais resultados encontrados, a seguir são apresentadas as conclusões extraídas para cada pergunta norteadora:

(1) Qual o nível de exposição e vulnerabilidade dos portos?

Previamente à apresentação do nível de exposição e vulnerabilidade dos 21 portos públicos analisados, é importante ressaltar que esse resultado é reflexo dos indicadores intermediários selecionados e da disponibilidade de informações. Ressaltase que essas informações devem ser revistas, atualizadas e monitoradas, para assim, ter um gerenciamento das mudanças no nível de exposição e vulnerabilidade dos portos.

Com base no que foi apresentado na seção 2.1 - Exposição, os portos de Aratu-Candeias, Itaqui, Paranaguá, Rio Grande, Santos e SUAPE apresentam um nível de exposição "muito alta" para todas as ameaças climáticas analisadas. Isso indica que esses seis portos possuem mais ativos econômicos expostos e, consequentemente, estão mais suscetíveis a sofrerem prejuízos.

Em relação à vulnerabilidade, seção 3.2, é notável a ausência de portos com vulnerabilidade classificada como "muito alta". O Porto de São Francisco do Sul merece destaque nesse indicador em virtude de obter uma vulnerabilidade classificada como "alta" tanto para tempestades quanto para vendavais devido a sua alta sensibilidade perante ambas as ameaças.

A vulnerabilidade elevada é reflexo da baixa adoção de medidas estruturais e de gestão em resposta às ameaças climáticas e aos possíveis impactos decorrentes. Isso porque,

ao analisar discriminadamente o indicador de vulnerabilidade, observou-se que a maioria dos portos, com exceção ao porto de Itajaí, obtiveram resultados baixos para a capacidade adaptativa. Portanto, ressalta-se a necessidade do investimento em medidas estruturais e de gestão no aumento da capacidade adaptativa dos portos, e, consequentemente, na redução da vulnerabilidade.

Os resultados para vulnerabilidade reforçam a questão de que a adaptação deve ser pensada de forma individualizada, pois mesmo os portos localizados em uma mesma região possuem particularidades intrínsecas às suas operações que os tornam menos ou mais vulneráveis a um evento extremo. Por exemplo, apesar dos portos de Aratu-Candeias e Salvador estarem localizados na região Nordeste do país e na mesma baía, a Baía de Todos os Santos, o fator que os tornaram vulneráveis em relação às tempestades, vendavais e aumento do nível do mar não foi o mesmo.

(2) Quais informações climáticas os portos utilizam para as tomadas de decisão?

Por meio dos resultados extraídos do questionário apresentado anteriormente no P2, foi possível observar que a grande maioria dos portos não realiza o monitoramento das informações climáticas. Em relação às ameaças analisadas, tem-se o seguinte:

- Precipitação: apenas 10 portos realizam o monitoramento, sendo que desses somente 4 possuem estação meteorológica própria;
- Velocidade e direção dos ventos: 12 portos responderam que realizam o monitoramento, dos quais, apenas 4 possuem estação própria;
- Nível do Mar: 12 portos responderam que realizam o monitoramento, sendo que desses, apenas 4 possuem estação própria;

Essa situação, onde poucos portos possuem uma estação meteorológica própria, aponta para uma falta de governança dos dados climáticos, e, consequentemente, a grande maioria dos portos analisados não utiliza as informações climáticas nas suas tomadas de decisões. Esse cenário, somado à verificação, também por meio do formulário, de que apenas seis portos incluem as mudanças do clima em seus planos

estratégicos, demonstra o baixo uso de informações climáticas nas tomadas de decisões pelos portos.

(3) Quais informações climáticas deveriam ser utilizadas nas tomadas de decisão?

Para entender os limiares críticos aos quais as infraestruturas e operações podem ser afetadas por condições extremas de clima é fundamental que se tenha um registro constante de informações meteorológicas e maregráficas, como velocidade do vento, precipitação e variações do nível do mar. No entanto, como apresentado no Produto 2 — Impacto do clima no setor portuário da costa brasileira, grande parte dos portos não realiza o monitoramento e registro dos limiares críticos em relação aos eventos climáticos extremos. Isso fez com que a análise das ameaças se limitasse apenas nos valores padrões estabelecidos pela literatura, como Rx1day ou Wx90p, além de dados globais do aumento do nível do mar, conforme apresentado no P3- Frequência das ameaças climáticas no setor portuário costeiro brasileiro.

Tendo em vista a necessidade de compreender os limiares críticos das infraestruturas portuárias, para assim, compreender como as alterações do clima irão tornar essas atividades mais vulneráveis, recomenda-se fortemente o monitoramento dos dados climáticos e maregráficos. Esse monitoramento auxiliará na tomada de decisão e priorização em relação à implementação de ações de adaptação que tenham por objetivo a redução do risco, por exemplo, na atualização dos critérios de projeto de obras ou na implantação de uma determinada infraestrutura.

(4) Quais são os horizontes temporais das tomadas de decisão (do planejamento setorial, da gestão e da operação)?

O horizonte temporal para as tomadas de decisão do planejamento do setor portuário varia de porto a porto. Os resultados levantados no *P2- Impacto do clima no setor portuário da costa brasileira* mostram que na maioria dos portos o horizonte temporal para o planejamento de aumento de capital, expansão e manutenção é de 1 a 5 anos (curto prazo). Apenas o porto de Itajaí possui um planejamento de mais de 30 anos (longo prazo) para o planejamento de aumento de capital, expansão e manutenção.

Commented [m1]: @Anderson, alteramos a frase para que ela fizesse sentido. A ideia aqui é apontar que não foi possível utilizar os limiares críticos na análise das ameacas climáticas.

Destaca-se que alguns portos apontaram não possuir nenhum planejamento, o que pode ser um risco no ponto de vista da gestão da infraestrutura, dado que, a não realização de investimentos periódicos pode ocasionar na degradação e perda da capacidade produtiva do porto.

Assim, entende-se que a análise de risco climático deve ser integrada no planejamento estratégico do porto, com o objetivo de auxiliar na adoção de horizontes temporais mais apropriados para o planejamento de investimentos em ações proativas e em reposição e manutenção de infraestruturas portuárias.

4.1 RECOMENDAÇÕES E PRÓXIMOS PASSOS

A análise em escala nacional permite que haja uma comparação entre os portos públicos da costa brasileira. Entretanto, recomenda-se fortemente a análise local a fim de se obter informações e dados representativos focados na realidade de um porto em questão. Isso porque, mesmos portos localizados em regiões similares, existirão características que os distinguem, como foi o caso do porto de Aratu-Candeias e de Salvador.

A seguir são elencadas algumas considerações e recomendações para a elaboração de uma análise individual para cada porto:

- Realizar uma análise holística, levando em consideração toda a cadeia logística
 do setor portuário, visto que um terminal portuário pode não ser afetado por um
 evento extremo, mas se uma estrada de acesso for interrompida, o terminal pode
 ter suas operações reduzidas ou até mesmo interrompidas. Da mesma forma
 que uma paralisação no porto pode prejudicar toda uma cadeia logística
 (BECKER et al., 2013);
- Realizar um levantamento prévio das áreas responsáveis pelas informações que compõe o indicador analisado, para assim, obter dados mais precisos;
- Avaliar, junto às áreas responsáveis o volume de carga perigosas que o porto movimenta, dado que isso reflete na vulnerabilidade do porto.

Por fim, como próximos passos, a partir do Produto 5 – risco Climático será possível compreender o nível de risco dos 21 portos públicos analisados, considerando os resultados dos indicadores de ameaças apresentados no P3, e dos indicadores de vulnerabilidade e capacidade adaptativa apresentados no presente relatório. Além disso, o P5 apresentará um ranking dos portos, identificando quais portos estão e estarão sobre um maior risco de tempestades, vendavais e aumento do nível do mar, considerando os diferentes cenários e período analisados.

REFERÊNCIAS

AGÊNCIA ESTADUAL DE NOTÍCIAS DO ESTADO DO PARANÁ. **Chuvas provocam paralisação em parte das operações portuárias**. 2021. Disponível em: http://www.aen.pr.gov.br/modules/noticias/article.php?storyid=110738. Acesso em: 6 maio. 2021.

ANTAQ. Infraestrutura ambiental. *In*: 2021. Disponível em: http://portal.antaq.gov.br/index.php/infraestrutura-ambiental/. Acesso em: 23 jun. 2021.

BECKER, A. *et al.* A note on climate change adaptation for seaports: A challenge for global ports, a challenge for global society. **Climatic Change**, v. 120, 2013.

BECKER, A.; MATSON, P.; FISCHER, M.; MASTRANDREA, M. Toward Seaport Resilience for Climate Change Adaptation: Stakeholder Perceptions of Hurricane Impacts in Gulfport (MS) and Providence (RI). v. 99, p. 1–49, 2015. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0305900614000427. Acesso em: 15 jun. 2021.

BRASIL, TRIBUNAL DE CONTAS DA UNIÃO - TCU. Projeto de Apoio à Modernização e o Fortalecimento Institucional do Tribunal de Contas da União — Aperfeiçoamento do Controle Externo da Regulação. Produto 3 - Relatório sobre a Fiscalização da Regulação Econômico-Financeira: Setor Portuário. Brasília, DF: [s. n.], 2006.

FRITZSCHE, K.; SCHNEIDERBAUER, S.; BUBECK, P.; KIENBERGER, S.; BUTH, M.; ZEBISCH, M.; KAHLENBORN, W. The Vulnerability Sourcebook: Concept and guidelines for standardised vulnerability assessments. [S. l.]: GIZ, 2014.

IPCC. Climate change 2014: Synthesis Report. Geneva, Switzerland: Intergovernmental Panel on Climate Change, 2014.

IZAGUIRRE, C.; LOSADA, I. J.; CAMUS, P.; VIGH, J. L.; STENEK, V. Climate change risk to global port operations. **Nature Climate Change**, v. 11, n. 1, p. 14–20, 2021. Disponível em: https://www.nature.com/articles/s41558-020-00937-z. Acesso em: 6 abr. 2021.

NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY. **World Port Index**. [S. l.: s. n.]. Disponível em:

https://msi.nga.mil/api/publications/download?key=16694622/SFH00000/Pub150bk.pdf&type=view. Acesso em: 6 abr. 2021.

NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY. **Maritime Safety Information: World Port Index**. 2021. Disponível em: https://msi.nga.mil/Publications/WPI. Acesso em: 21 jun. 2021.

NG, A. K. Y. et al. Port Decision Maker Perceptions on the Effectiveness of Climate Adaptation Actions. p. 44, 2018.

PBMC. Impacto, vulnerabilidade e adaptação das Cidades costeiras Brasileiras às mudanças climáticas: Relatório Especial do Painel Brasileiro de Mudanças Climáticas. Rio de Janeiro, Brasil: PBMC, COPPE - UFRJ, 2016. Relatório Especial do Painel Brasileiro de Mudanças Climáticas. Disponível em:

 $https://ppgoceano.paginas.ufsc.br/files/2017/06/Relatorio_DOIS_v1_04.06.17.pdf.\ Acesso\ em:\ 8\ jun.\ 2021.$

SOLOMON, S.; INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE; INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (org.). Climate change 2007: the physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge; New York: Cambridge University Press, 2007.

APÊNDICE I – DETALHAMENTO DO NÚMERO DE INFRAESTRUTURAS PORTUÁRIAS

As tabelas abaixo detalham as informações sobre o quantitativo de infraestruturas portuárias em cada porto consideradas para cada ameaça analisada.

Ameaça: Tempestade					
Porto	Obras de abrigo	Equipamento de movimentação de carga	Instalação de armazenagem	Instalação de acostagem	Total de infraestruturas
Angra dos Reis	0	1	43	2	46
Aratu-Candeias	0	8	175	10	193
Cabedelo	0	0	45	3	48
Fortaleza	6	2	9	9	26
Ilhéus	1	2	10	3	16
Imbituba	4	0	17	3	24
Itaguaí	0	15	14	9	38
Itajaí	1	4	2	5	12
Itaqui	0	7	125	7	139
Natal	2	1	49	3	55
Niterói	0	6	2	3	11
Paranaguá	0	30	275	23	328
Recife	3	6	48	10	67
Rio de Janeiro	0	65	70	32	167
Rio Grande	2	44	330	20	396
Salvador	2	10	11	10	33
Santos	0	145	503	69	717
São Francisco do Sul	0	0	10	8	18

Ameaça: Tempestade					
Porto	Obras de abrigo	Equipamento de movimentação de carga	Instalação de armazenagem	Instalação de acostagem	Total de infraestruturas
São Sebastião	0	9	6	6	21
SUAPE	1	26	149	18	194
Vitória	0	9	58	12	79

	<u> </u>	Ameaça: Vendavais	
Porto	Equipamento de movimentação de carga	Instalação de armazenagem	Total de infraestruturas
Angra dos Reis	1	43	44
Aratu-Candeias	8	175	183
Cabedelo	0	45	45
Fortaleza	2	9	11
llhéus	2	10	12
Imbituba	0	17	17
Itaguaí	15	14	29
Itajaí	4	2	6
Itaqui	7	125	132
Natal	1	49	50
Niterói	6	2	8
Paranaguá	30	275	305
Recife	6	48	54
Rio de Janeiro	65	70	135
Rio Grande	44	330	374
Salvador	10	11	21
Santos	145	503	648
São Francisco do Sul	0	10	10
São Sebastião	9	6	15
SUAPE	26	149	175
Vitória	9	58	67

		Ameaça: Aumento do Nív	el do Mar	
Porto	Obras de abrigo	Instalação de armazenagem	Instalação de acostagem	Total de infraestruturas
Angra dos Reis	0	43	2	45
Aratu-Candeias	0	175	10	185
Cabedelo	0	45	3	48
Fortaleza	6	9	9	24
Ilhéus	1	10	3	14
Imbituba	4	17	3	24
Itaguaí	0	14	9	23
Itajaí	1	2	5	8
Itaqui	0	125	7	132
Natal	2	49	3	54
Niterói	0	2	3	5
Paranaguá	0	275	23	298
Recife	3	48	10	61
Rio de Janeiro	0	70	32	102
Rio Grande	2	330	20	352
Salvador	2	11	10	23
Santos	0	503	69	572
São Francisco do Sul	0	10	8	18
São Sebastião	0	6	6	12
SUAPE	1	149	18	168
Vitória	0	58	12	70

APÊNDICE II – DETALHAMENTO DA MOVIMENTAÇÃO DE CARGA ANUAL

Nesta tabela, está disposto detalhadamente a média da carga total movimentada pelos portos entre os anos de 2018 e 2020.

Porto	Movimentação de carga anual (t)
Angra dos Reis	585
Aratu-Candeias	6.322.313
Cabedelo	1.182.051
Fortaleza	4.846.867
Ilhéus	219.158
Imbituba	5.617.554
Itaguaí	48.520.216
Itajaí	5.106.960
Itaqui	24.292.797
Natal	712.837
Niterói	30.972
Paranaguá	49.690.215
Recife	1.307.316
Rio de Janeiro	6.996.712
Rio Grande	19.284.570
Salvador	5.062.475
Santos	109.211.872
São Francisco do Sul	11.473.637
São Sebastião	745.484
SUAPE	24.342.001
Vitória	6.879.039

APÊNDICE III – DETALHAMENTO DO TIPO DE CARGA MOVIMENTADO

Nas tabelas abaixo, estão detalhados os dados de entrada para o cálculo do indicador intermediário de tipo de carga movimentada para a ameaça de tempestade e de vendavais.

Ameaça: Tempestades									
Porto		Total movi	mentado (t)			Movimentação			
	2018	2019	2020	Somatório	2018	2019	2020	Somatório	vegetal
Angra dos Reis	0	1.240	514	1.754	0	0	0	0	0,00%
Aratu- Candeias	6.489.893	6.368.990	6.108.057	18.966.939	1.962.289	2.195.680	1.554.795	5.712.765	30,12%
Cabedelo	1.180.560	1.238.618	1.126.973	3.546.152	318.972	482.095	359.713	1.160.779	32,73%
Fortaleza	4.937.124	4.392.403	5.211.074	14.540.601	1.429.158	1.141.763	1.656.683	4.227.604	29,07%
Ilhéus	187.967	147.411	322.095	657.473	89.355	0	92.149	181.505	27,61%
Imbituba	5.222.993	5.761.428	5.868.241	16.852.661	2.337.774	3.058.340	2.914.155	8.310.268	49,31%
Itaguaí	56.635.105	43.186.416	45.739.128	145.560.649	0	217.469	283.096	500.565	0,34%
Itajaí	3.993.370	5.347.592	5.979.919	15.320.880	0	6	0	6	0,00%
Itaqui	22.403.221	25.171.461	25.303.708	72.878.390	13.601.547	14.505.286	16.692.951	44.799.784	61,47%
Natal	709.073	732.542	696.895	2.138.511	290.554	340.942	302.015	933.511	43,65%
Niterói	37.495	12.553	42.867	92.915	0	0	0	0	0,00%
Paranaguá	48.524.954	48.458.439	52.087.253	149.070.646	36.404.697	35.199.695	38.002.180	109.606.571	73,53%

Ameaça: Tempestades										
Porto		Total movi	mentado (t)			Movimentação				
	2018	2019	2020	Somatório	2018	2019	2020	Somatório	vegetal	
Recife	1.228.167	1.412.426	1.281.354	3.921.947	687.794	840.760	895.494	2.424.049	61,81%	
Rio de Janeiro	5.945.573	6.779.563	8.265.002	20.990.137	840.760	415.283	444.903	1.700.947	8,10%	
Rio Grande	19.494.978	18.190.567	20.168.165	57.853.710	14.153.182	13.711.198	13.106.630	40.971.011	70,82%	
Salvador	4.912.788	5.100.835	5.173.804	15.187.426	628.029	689.613	0	1.317.642	8,68%	
Santos	107.070.729	106.211.153	114.353.735	327.635.616	56.552.316	56.091.193	0	112.643.509	34,38%	
São Francisco do Sul	11.412.896	11.194.870	11.813.145	34.420.910	8.467.689	8.282.130	0	16.749.819	48,66%	
São Sebastião	697.658	740.530	798.265	2.236.453	97.211	168.871	0	266.082	11,90%	
SUAPE	23.435.961	23.891.460	25.698.583	73.026.004	450.756	512.656	651.451	1.614.863	2,21%	
Vitória	6.704.367	6.986.921	6.945.828	20.637.116	1.586.997	1.801.673	1.682.609	5.071.279	24,57%	

Ameaça: Vendavais										
Porto	M	lédia anual er	ntre 2018, 20	19 e 2020 (t)	% carga por tipo movimentada em 2018, 2019, 2020					
	Conteinerizada	Granel Líquido e Gasoso	Carga Geral	Granel Sólido	Total	Conteinerizada	Granel Líquido e Gasoso	Carga Geral	Granel Sólido	Total
Angra dos Reis	0	0	585	0	585	0,00%	0,00%	100,00 %	0,00%	100,00%
Aratu- Candeias	0	4.558.731	0	1.763.582	6.322.313	0,00%	72,11%	0,00%	27,89%	27,89%
Cabedelo	0	450.721	0	731.329	1.182.051	0,00%	38,13%	0,00%	61,87%	61,87%
Fortaleza	681.691	2.468.113	125.798	1.571.264	4.846.867	14,06%	50,92%	2,60%	32,42%	49,08%
Ilhéus	0	0	95.996	123.162	219.158	0,00%	0,00%	43,80%	56,20%	100,00%
Imbituba	888.846	61.272	261.133	4.406.303	5.617.554	15,82%	1,09%	4,65%	78,44%	98,91%
Itaguaí	2.674.617	56.272	609.334	45.179.993	48.520.216	5,51%	0,12%	1,26%	93,12%	99,88%
Itajaí	5.088.006	0	18.954	0	5.106.960	99,63%	0,00%	0,37%	0,00%	100,00%
Itaqui	43.745	6.988.621	1.238.560	16.021.872	24.292.797	0,18%	28,77%	5,10%	65,95%	71,23%
Natal	401.553	0	6.133	305.151	712.837	56,33%	0,00%	0,86%	42,81%	100,00%
Niterói	0	0	30.972	0	30.972	0,00%	0,00%	100,00	0,00%	100,00%
Paranaguá	9.455.350	3.330.431	1.478.550	35.425.884	49.690.215	19,03%	6,70%	2,98%	71,29%	93,30%

Ameaça: Vendavais										
Porto	N	lédia anual er	itre 2018, 20	19 e 2020 (t)	% carga por tipo movimentada em 2018, 2019, 2020					
	Conteinerizada	Granel Líquido e Gasoso	Carga Geral	Granel Sólido	Total	Conteinerizada	Granel Líquido e Gasoso	Carga Geral	Granel Sólido	Total
Recife	0	5.594	479.437	822.284	1.307.316	0,00%	0,43%	36,67%	62,90%	99,57%
Rio de Janeiro	4.469.491	217.464	622.640	1.687.117	6.996.712	63,88%	3,11%	8,90%	24,11%	96,89%
Rio Grande	7.975.738	3.162.084	769.352	7.377.397	19.284.570	41,36%	16,40%	3,99%	38,26%	83,60%
Salvador	4.196.211	0	278.634	587.631	5.062.475	82,89%	0,00%	5,50%	11,61%	100,00%
Santos	35.977.879	13.719.596	3.731.415	55.782.981	109.211.872	32,94%	12,56%	3,42%	51,08%	87,44%
São Francisco do Sul	0	13.392	2.822.140	8.638.105	11.473.637	0,00%	0,12%	24,60%	75,29%	99,88%
São Sebastião	0	5.640	80.030	659.814	745.484	0,00%	0,76%	10,74%	88,51%	99,24%
SUAPE	5.355.735	18.124.698	346.700	514.869	24.342.001	22,00%	74,46%	1,42%	2,12%	25,54%
Vitória	2.718.846	767.250	600.543	2.792.400	6.879.039	39,52%	11,15%	8,73%	40,59%	88,85%

Rua Paraíba, 1.000 – 7° andar – Funcionários

CEP 31130 – 141 - Belo Horizonte – MG

Telefone | Fax 55 31 3656 0501

BH | SP | RJ

WWW.WAYCARBON.COM